摘要
Chapter 5 Metastable-Phase Oxide, Chalcogenide, Phosphide, and Boride Materials Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Book Editor(s):Qi Shao, Qi Shao Soochow University, Suzhou, ChinaSearch for more papers by this authorZhenhui Kang, Zhenhui Kang Soochow University, Suzhou, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Suzhou, ChinaSearch for more papers by this author First published: 05 April 2024 https://doi.org/10.1002/9783527839834.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter examines some metastable-phase compounds other than those metals discussed in Chapter 4. The metastable-phase oxide, chalcogenide, phosphide, and boride materials are discussed. Their applications in the catalysis field are also mentioned. References Landmann , M. , Rauls , E.W.G.S. , and Schmidt , W.G. ( 2012 ). The electronic structure and optical response of rutile, anatase and brookite TiO 2 . Journal of Physics: Condensed Matter 24 ( 19 ): 195503 . 10.1088/0953-8984/24/19/195503 CASPubMedWeb of Science®Google Scholar Guo , Q. , Zhou , C.Y. , Ma , Z.B. , and Yang , X.M. ( 2019 ). Fundamentals of TiO 2 photocatalysis: concepts, mechanisms, and challenges . Advanced Materials 31 ( 50 ): 1901997 . 10.1002/adma.201901997 CASWeb of Science®Google Scholar Howard , C.J. , Sabine , T.M. , and Dickson , F. ( 1991 ). Structural and thermal parameters for rutile and anatase . Acta Crystallographica, Section B: Structural Science 47 ( 4 ): 462 – 468 . 10.1107/S010876819100335X Web of Science®Google Scholar Rui , Z. , Wu , S. , Peng , C. , and Ji , H. ( 2014 ). Comparison of TiO 2 Degussa P25 with anatase and rutile crystalline phases for methane combustion . Chemical Engineering Journal 243 : 254 – 264 . 10.1016/j.cej.2014.01.010 CASWeb of Science®Google Scholar Singh , J. , Sharma , S. , Sharma , S. , and Singh , R.C. ( 2019 ). Effect of tungsten doping on structural and optical properties of rutile TiO 2 and band gap narrowing . Optik 182 : 538 – 547 . 10.1016/j.ijleo.2019.01.070 CASWeb of Science®Google Scholar Choudhury , B. and Choudhury , A. ( 2014 ). Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO 2 nanoparticles . Physica E: Low Dimensional System Nanostructure 56 : 364 – 371 . 10.1016/j.physe.2013.10.014 CASWeb of Science®Google Scholar Tanaka , K. , Capule , M.F.V. , and Hisanaga , T. ( 1991 ). Effect of crystallinity of TiO 2 on its photocatalytic action . Chemical Physics Letters 187 ( 1–2 ): 73 – 76 . 10.1016/0009-2614(91)90486-S CASWeb of Science®Google Scholar Bickley , R.I. , Gonzalez-Carreno , T. , Lees , J.S. et al. ( 1991 ). A structural investigation of titanium-dioxide photocatalysts . Journal of Solid State Chemistry 92 ( 1 ): 178 – 190 . 10.1016/0022-4596(91)90255-G CASWeb of Science®Google Scholar Kim , S.A. , Hussain , S.K. , Abbas , M.A. , and Bang , J.H. ( 2022 ). High-temperature solid-state rutile-to-anatase phase transformation in TiO 2 . Journal of Solid State Chemistry 315 : 123510 . 10.1016/j.jssc.2022.123510 CASWeb of Science®Google Scholar Luo , Z. , Poyraz , A.S. , Kuo , C.H. et al. ( 2015 ). Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity . Chemistry of Materials 27 ( 1 ): 6 – 17 . 10.1021/cm5035112 CASWeb of Science®Google Scholar Xu , H. , Li , G. , Zhu , G. et al. ( 2015 ). Enhanced photocatalytic degradation of rutile/anatase TiO 2 heterojunction nanoflowers . Catalysis Communications 62 : 52 – 56 . 10.1016/j.catcom.2015.01.001 CASWeb of Science®Google Scholar Wang , Y. , Li , L. , Huang , X. et al. ( 2015 ). New insights into fluorinated TiO 2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts . RSC Advances 5 ( 43 ): 34302 – 34313 . 10.1039/C4RA17076H CASWeb of Science®Google Scholar Sakurai , S. , Namai , A. , Hashimoto , K. , and Ohkoshi , S.I. ( 2009 ). First observation of phase transformation of all four Fe 2 O 3 phases (γ→ ϵ→ β→ α-phase) . Journal of the American Chemical Society 131 ( 51 ): 18299 – 18303 . 10.1021/ja9046069 CASPubMedWeb of Science®Google Scholar Wang , N. , Du , Y.C. , Ma , W.J. et al. ( 2017 ). Rational design and synthesis of SnO 2 -encapsulated α-Fe 2 O 3 nanocubes as a robust and stable photo-Fenton catalyst . Applied Catalysis B: Environmental 210 : 23 – 33 . 10.1016/j.apcatb.2017.03.037 CASWeb of Science®Google Scholar Sivula , K. , Le Formal , F. , and Grätzel , M. ( 2011 ). Solar water splitting: progress using hematite (α-Fe 2 O 3 ) photoelectrodes . ChemSusChem 4 ( 4 ): 432 – 449 . 10.1002/cssc.201000416 CASPubMedWeb of Science®Google Scholar Fu , Y. , Dong , C.L. , Zhou , W. et al. ( 2020 ). A ternary nanostructured α-Fe 2 O 3 /Au/TiO 2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting . Applied Catalysis B: Environmental 260 : 118206 . 10.1016/j.apcatb.2019.118206 CASWeb of Science®Google Scholar Danno , T. , Nakatsuka , D. , Kusano , Y. et al. ( 2013 ). Crystal structure of β-Fe 2 O 3 and topotactic phase transformation to α-Fe 2 O 3 . Crystal Growth & Design 13 ( 2 ): 770 – 774 . 10.1021/cg301493a CASWeb of Science®Google Scholar Jiao , F. , Jumas , J.C. , Womes , M. et al. ( 2006 ). Synthesis of ordered mesoporous Fe 3 O 4 and γ-Fe 2 O 3 with crystalline walls using post-template reduction/oxidation . Journal of the American Chemical Society 128 ( 39 ): 12905 – 12909 . 10.1021/ja063662i CASPubMedWeb of Science®Google Scholar Herrero , E. , Cabanas , M.V. , Vallet-Regi , M. et al. ( 1997 ). Influence of synthesis conditions on the γ-Fe 2 O 3 properties . Solid State Ionics 101 ( 1 ): 213 – 219 . Google Scholar Pascal , C. , Pascal , J.L. , Favier , F. et al. ( 1999 ). Electrochemical synthesis for the control of γ-Fe 2 O 3 nanoparticle size. Morphology, microstructure, and magnetic behavior . Chemistry of Materials 11 ( 1 ): 141 – 147 . 10.1021/cm980742f CASWeb of Science®Google Scholar Fan , Z.L. , Ji , Y.J. , Shao , Q. et al. ( 2021 ). Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide . Joule 5 ( 12 ): 3221 – 3234 . 10.1016/j.joule.2021.10.002 CASWeb of Science®Google Scholar Gich , M. , Frontera , C. , Roig , A. et al. ( 2006 ). High-and low-temperature crystal and magnetic structures of ϵ-Fe 2 O 3 and their correlation to its magnetic properties . Chemistry of Materials 18 ( 16 ): 3889 – 3897 . 10.1021/cm060993l CASWeb of Science®Google Scholar Barick , K.C. , Varaprasad , B.C.S. , and Bahadur , D. ( 2010 ). Structural and magnetic properties of γ- and ϵ-Fe 2 O 3 nanoparticles dispersed in silica matrix . Journal of Non-Crystalline Solids 356 ( 3 ): 153 – 159 . 10.1016/j.jnoncrysol.2009.10.001 CASWeb of Science®Google Scholar Ashrafi , A.A. , Ueta , A. , Avramescu , A. et al. ( 2000 ). Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers . Applied Physics Letters 76 ( 5 ): 550 – 552 . 10.1063/1.125851 CASWeb of Science®Google Scholar Al-Zahrani , H.Y.S. , Pal , J. , and Migliorato , M.A. ( 2013 ). Non-linear piezoelectricity in wurtzite ZnO semiconductors . Nano Energy 2 ( 6 ): 1214 – 1217 . 10.1016/j.nanoen.2013.05.005 CASWeb of Science®Google Scholar Goumrhar , F. , Bahmad , L. , Mounkachi , O. , and Benyoussef , A. ( 2018 ). Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO . International Journal of Modern Physics B 32 ( 03 ): 1850025 . 10.1142/S021797921850025X CASGoogle Scholar Ong , C.B. , Ng , L.Y. , and Mohammad , A.W. ( 2018 ). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications . Renewable and Sustainable Energy Reviews 81 : 536 – 551 . 10.1016/j.rser.2017.08.020 CASWeb of Science®Google Scholar Catti , M. , Noel , Y. , and Dovesi , R. ( 2003 ). Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations . Journal of Physics and Chemistry of Solids 64 ( 11 ): 2183 – 2190 . 10.1016/S0022-3697(03)00219-1 CASWeb of Science®Google Scholar Wu , W.Z. , Wang , L. , Li , Y.L. et al. ( 2014 ). Piezoelectricity of single-atomic-layer MoS 2 for energy conversion and piezotronics . Nature 514 ( 7523 ): 470 – 474 . 10.1038/nature13792 CASPubMedWeb of Science®Google Scholar Seyler , K.L. , Rivera , P. , Yu , H.Y. et al. ( 2019 ). Signatures of moire-trapped valley excitons in MoSe 2 /WSe 2 heterobilayers . Nature 567 ( 7746 ): 66 – 70 . 10.1038/s41586-019-0957-1 CASPubMedWeb of Science®Google Scholar Wang , Y. , Xiao , J. , Zhu , H.Y. et al. ( 2017 ). Structural phase transition in monolayer MoTe 2 driven by electrostatic doping . Nature 550 ( 7677 ): 487 – 491 . 10.1038/nature24043 CASPubMedWeb of Science®Google Scholar Wilson , J.A. and Yoffe , A.D. ( 1969 ). The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties . Advances in Physics 18 ( 73 ): 193 – 335 . 10.1080/00018736900101307 CASWeb of Science®Google Scholar Zhou , Y.G. , Wang , Z.G. , Yang , P. et al. ( 2012 ). Tensile strain switched ferromagnetism in layered NbS 2 and NbSe 2 . ACS Nano 6 ( 11 ): 9727 – 9736 . 10.1021/nn303198w CASPubMedWeb of Science®Google Scholar Naito , M. and Tanaka , S. ( 1982 ). Electrical transport properties in 2H - NbS 2 , - NbSe 2 , -TaS 2 and - TaSe 2 . Journal Physics Society Japan 51 ( 1 ): 219 – 227 . 10.1143/JPSJ.51.219 CASWeb of Science®Google Scholar Zhao , W.J. , Ghorannevis , Z. , Chu , L.Q. et al. ( 2013 ). Evolution of electronic structure in atomically thin sheets of WS 2 and WSe 2 . ACS Nano 7 ( 1 ): 791 – 797 . 10.1021/nn305275h CASPubMedWeb of Science®Google Scholar Hu , Z. , Tai , Z.X. , Liu , Q.N. et al. ( 2019 ). Ultrathin 2D TiS 2 nanosheets for high capacity and long-life sodium ion batteries . Advanced Energy Materials 9 ( 8 ): 1803210 . 10.1002/aenm.201803210 Web of Science®Google Scholar Mattinen , M. , Popov , G. , Vehkamäki , M. et al. ( 2019 ). Atomic layer deposition of emerging 2D semiconductors, HfS 2 and ZrS 2 , for optoelectronics . Chemistry of Materials 31 ( 15 ): 5713 – 5724 . 10.1021/acs.chemmater.9b01688 CASWeb of Science®Google Scholar Toh , R.J. , Sofer , Z. , and Pumera , M. ( 2016 ). Catalytic properties of group 4 transition metal dichalcogenides (MX 2 ; M= Ti, Zr, Hf; X= S, Se, Te) . Journal of Materials Chemistry A 4 ( 47 ): 18322 – 18334 . 10.1039/C6TA08089H CASWeb of Science®Google Scholar Tseng , J. and Luo , X. ( 2020 ). First-principles investigation of low-dimension MSe 2 (M = Ti, Hf, Zr) configurations as promising thermoelectric materials . Journal of Physics and Chemistry of Solids 139 : 109322 . 10.1016/j.jpcs.2019.109322 CASWeb of Science®Google Scholar Wang , Y. , Sofer , Z. , Luxa , J. , and Pumera , M. ( 2016 ). Lithium exfoliated vanadium dichalcogenides (VS 2 , VSe 2 , VTe 2 ) exhibit dramatically different properties from their bulk counterparts . Advanced Materials Interfaces 3 ( 23 ): 1600433 . 10.1002/admi.201600433 CASWeb of Science®Google Scholar Wang , F. , Zhang , Y. , Wang , Z.J. et al. ( 2023 ). Ionic liquid gating induced self-intercalation of transition metal chalcogenides . Nature Communications 14 ( 1 ): 4945 . 10.1038/s41467-023-40591-5 CASWeb of Science®Google Scholar Besse , R. , Lima , M.P. , and Da Silva , J.L.F. ( 2019 ). First-principles exploration of two-dimensional transition metal dichalcogenides based on Fe, Co, Ni, and Cu groups and their van der Waals heterostructures . ACS Applied Energy Materials 5 ( 8 ): 10329 – 10330 . 10.1021/acsaem.2c01941 Google Scholar Chia , X.Y. , Adriano , A. , Lazar , P. et al. ( 2016 ). Layered platinum dichalcogenides (PtS 2 , PtSe 2 , and PtTe 2 ) electrocatalysis: monotonic dependence on the chalcogen size . Advanced Functional Materials 26 ( 24 ): 4306 – 4318 . 10.1002/adfm.201505402 CASWeb of Science®Google Scholar Ho , C.H. and Liu , Z.Z. ( 2019 ). Complete-series excitonic dipole emissions in few layer ReS 2 and ReSe 2 observed by polarized photoluminescence spectroscopy . Nano Energy 56 : 641 – 650 . 10.1016/j.nanoen.2018.12.014 CASWeb of Science®Google Scholar Jaramillo , T.F. , Jorgensen , K.P. , Bonde , J. et al. ( 2007 ). Identification of active edge sites for electrochemical H 2 evolution from MoS 2 nanocatalysts . Science 317 ( 5834 ): 100 – 102 . 10.1126/science.1141483 CASPubMedWeb of Science®Google Scholar Karunadasa , H.I. , Montalvo , E. , Sun , Y.J. et al. ( 2012 ). A molecular MoS 2 edge site mimic for catalytic hydrogen generation . Science 335 ( 6069 ): 698 – 702 . 10.1126/science.1215868 CASPubMedWeb of Science®Google Scholar Sun , S. , Deng , P. , Mu , L. et al. ( 2021 ). Bionanoscale recognition underlies cell fate and therapy . Advanced Healthcare Materials 10 ( 22 ): 2101260 . 10.1002/adhm.202101260 CASWeb of Science®Google Scholar Ascencio , J.A. , Perez-Alvarez , M. , Molina , L.M. et al. ( 2003 ). Structural models of inorganic fullerene-like structures . Surface Science 526 ( 3 ): 243 – 247 . 10.1016/S0039-6028(02)02711-5 CASWeb of Science®Google Scholar Liu , Z.P. , Zhao , L. , Liu , Y.H. et al. ( 2019 ). Vertical nanosheet array of 1T phase MoS 2 for efficient and stable hydrogen evolution . Applied Catalysis B: Environmental 246 : 296 – 302 . 10.1016/j.apcatb.2019.01.062 CASWeb of Science®Google Scholar Tsai , C. , Chan , K.R. , Nørskov , J.K. , and Abild-Pedersen , F. ( 2015 ). Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides . Surface Science 640 : 133 – 140 . 10.1016/j.susc.2015.01.019 CASWeb of Science®Google Scholar Yin , X.M. , Tang , C.S. , Zheng , Y. et al. ( 2021 ). Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-) metallic phases . Chemical Society Reviews 50 ( 18 ): 10087 – 10115 . 10.1039/D1CS00236H CASPubMedWeb of Science®Google Scholar Manzeli , S. , Ovchinnikov , D. , Pasquier , D. et al. ( 2017 ). 2D transition metal dichalcogenides . Nature Reviews Materials 2 ( 8 ): 1 – 15 . 10.1038/natrevmats.2017.33 Web of Science®Google Scholar Wu , L.F. and Hofmann , J.P. ( 2021 ). Comparing the intrinsic her activity of transition metal dichalcogenides: pitfalls and suggestions . ACS Energy Letters 6 ( 7 ): 2619 – 2625 . 10.1021/acsenergylett.1c00912 CASWeb of Science®Google Scholar Voiry , D. , Yang , J. , and Chhowalla , M. ( 2016 ). Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction . Advanced Materials 28 ( 29 ): 6197 – 6206 . 10.1002/adma.201505597 CASPubMedWeb of Science®Google Scholar Liu , L. , Wu , J.X. , Wu , L.Y. et al. ( 2018 ). Phase-selective synthesis of 1T′ MoS 2 monolayers and heterophase bilayers . Nature Materials 17 ( 12 ): 1108 – 1114 . 10.1038/s41563-018-0187-1 CASPubMedWeb of Science®Google Scholar Kim , M.G. , Kim , S.H. , Jang , J.H. et al. ( 2023 ). Nanotubular geometry for stabilizing metastable 1T-phase Ru dichalcogenides . Advanced Energy Materials 13 ( 3 ): 2203133 . 10.1002/aenm.202203133 CASWeb of Science®Google Scholar Lukowski , M.A. , Daniel , A.S. , Meng , F. et al. ( 2013 ). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS 2 nanosheets . Journal of the American Chemical Society 135 ( 28 ): 10274 – 10277 . 10.1021/ja404523s CASPubMedWeb of Science®Google Scholar Sokolikova , M.S. and Mattevi , C. ( 2020 ). Direct synthesis of metastable phases of 2D transition metal dichalcogenides . Chemical Society Reviews 49 ( 12 ): 3952 – 3980 . 10.1039/D0CS00143K CASPubMedWeb of Science®Google Scholar Wang , R. , Han , J.C. , Yang , B. et al. ( 2020 ). Defect engineering in metastable phases of transition-metal dichalcogenides for electrochemical applications . Chemistry Asian Journal 15 ( 23 ): 3961 – 3972 . 10.1002/asia.202000883 CASWeb of Science®Google Scholar Antoniadou , M. , Daskalaki , V.M. , Balis , N. et al. ( 2011 ). Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO 2 combined photocatalysts . Applied Catalysis B: Environmental 107 ( 1-2 ): 188 – 196 . 10.1016/j.apcatb.2011.07.013 CASWeb of Science®Google Scholar Fenton , J.L. , Steimle , B.C. , and Schaak , R.E. ( 2018 ). Structure-selective synthesis of wurtzite and zincblende ZnS, CdS, and CuInS 2 using nanoparticle cation exchange reactions . Inorganic Chemistry 58 ( 1 ): 672 – 678 . 10.1021/acs.inorgchem.8b02880 Web of Science®Google Scholar Zelaya-Angel , O. , Yee-Madeira , H. , and Lozada-Morales , R. ( 1999 ). Theoretical basis for zincblende to wurtzite CdS-phase transition . Phase Transitions 70 ( 1 ): 11 – 17 . 10.1080/01411599908241336 CASWeb of Science®Google Scholar Shao , M.W. , Xu , F. , Peng , Y.Y. et al. ( 2002 ). Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature . New Journal of Chemistry 26 ( 10 ): 1440 – 1442 . 10.1039/b204084k CASWeb of Science®Google Scholar Tappan , A. and Brutchey , R.L. ( 2020 ). Polymorphic metastability in colloidal semiconductor nanocrystals . ChemNanoMat 6 ( 11 ): 1567 – 1588 . 10.1002/cnma.202000406 CASWeb of Science®Google Scholar Norako , M.E. , Greaney , M.J. , and Brutchey , R.L. ( 2012 ). Synthesis and characterization of wurtzite-phase copper tin selenide nanocrystals . Journal of the American Chemical Society 134 ( 1 ): 23 – 26 . 10.1021/ja206929s CASWeb of Science®Google Scholar Rath , T. , Haas , W. , Pein , A. et al. ( 2012 ). Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition . Solar Energy Materials & Solar Cells 101 : 87 – 94 . 10.1016/j.solmat.2012.02.025 CASWeb of Science®Google Scholar Howe , J.Y. , Rawn , C.J. , Jones , L.E. , and Ow , H. ( 2003 ). Improved crystallographic data for graphite . Powder Diffraction 18 ( 2 ): 150 – 154 . 10.1154/1.1536926 CASWeb of Science®Google Scholar Grüneis , A. , Kummer , K. , and Vyalikh , D.V. ( 2009 ). Dynamics of graphene growth on a metal surface: a time-dependent photoemission study . New Journal of Physics 11 : 073050 . 10.1088/1367-2630/11/7/073050 CASWeb of Science®Google Scholar Tulić , S. , Waitz , T. , ČaploviČová , M. et al. ( 2019 ). Covalent diamond–graphite bonding: mechanism of catalytic transformation . ACS Nano 13 ( 4 ): 4621 – 4630 . 10.1021/acsnano.9b00692 CASWeb of Science®Google Scholar Belenkov , E.A. and Greshnyakov , V.A. ( 2013 ). Classification schemes for carbon phases and nanostructures . New Carbon Materials 28 ( 4 ): 273 – 282 . 10.1016/S1872-5805(13)60081-5 CASWeb of Science®Google Scholar Khaliullin , R.Z. , Eshet , H. , Kühne , T.D. et al. ( 2011 ). Nucleation mechanism for the direct graphite-to-diamond phase transition . Nature Materials 10 ( 9 ): 693 – 697 . 10.1038/nmat3078 CASWeb of Science®Google Scholar Jarvis , R.F. , Jacubinas , J.R.M. , and Kaner , R.B. ( 2000 ). Self-propagating metathesis routes to metastable group 4 phosphides . Inorganic Chemistry 39 ( 15 ): 3243 – 3246 . 10.1021/ic000057m CASWeb of Science®Google Scholar Hofmann , K. , Kalyon , N. , Kapfenberger , C. et al. ( 2015 ). Matestable Ni 7 B 3 : a new paramagnetic boride from solution chemistry, its crystal structure and magnetic properties . Inorganic Chemistry 54 ( 22 ): 10873 – 10877 . 10.1021/acs.inorgchem.5b01929 CASWeb of Science®Google Scholar Xie , Z.L. , Graule , M. , Orlovskaya , N. et al. ( 2014 ). Novel high pressure hexagonal OsB 2 by mechanochemistry . Journal of Solid State Chemistry 215 : 16 – 21 . 10.1016/j.jssc.2014.03.020 CASWeb of Science®Google Scholar Metastable Materials: Synthesis, Characterization and Catalytic Applications ReferencesRelatedInformation