摘要
Chapter 22 INDUSTRIAL APPLICATIONS OF FIBER OPTIC SENSORS John W. Berthold III, John W. Berthold III Davidson Instruments, Inc., Conroe, TX, USASearch for more papers by this author John W. Berthold III, John W. Berthold III Davidson Instruments, Inc., Conroe, TX, USASearch for more papers by this author Book Editor(s):Eric Udd, Eric Udd Columbia Gorge Research LLC, Fairview, OR, USA McDonnell Douglas Electronic Systems Company, Santa Ana, CA, USASearch for more papers by this authorWilliam B. Spillman Jr., William B. Spillman Jr. Columbia Gorge Research LLC, Fairview, OR, USASearch for more papers by this author First published: 05 April 2024 https://doi.org/10.1002/9781119678892.ch22 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Optical fibers have been envisioned for sensing physical and chemical parameters since the late 1970s. From an industrial point of view, fiber optic sensors are attractive because they offer excellent sensitivity and dynamic range, compact and rugged packages, and potential for low cost and high reliability. In the chemical or pyrotechnic industries where explosion hazards exist, fibers can be run anywhere, unlike electrical cables, without the need for protective conduits, ground-fault protectors, or explosion-proof containers. Aerospace applications of fiber sensors have provided initial and continuing strong impetus for development via US government funding. A number of fiber optic methods have been used and some commercialized for industrial temperature measurements. Fiber optic sensors for pressure measurement have undergone extensive development, especially for acoustic applications in the US Navy's Fiber Optic Sensor System program. Various fiber optic intensity-based methods are used to measure position as well as proximity and displacement. REFERENCES K. Sakurai , The optoelectronic industry in Japan: development and prospects , Opt. News 11 , 6 ( 1985 ). 10.1364/ON.11.10.000006 Google Scholar J. W. Berthold , Overview of fiber optic intensity sensors for industry , Proc. SPIE, OE/Fibers '87–'88 , San Diego, CA , 1987 . Google Scholar A. L. Harmer , Status of fiber optic sensors in Europe , Proc. SPIE 985, OE/Fibers '88 , Boston, MA , 1988 . Google Scholar B. Culshaw and J. Dakin , Eds., Optical Fiber Sensors: Systems and Applications , vol. 2 , Artech House , Norwood, MA , 1989 . Google Scholar A. D. Kersey , F. Bucholtz , K. Sinansky and A. Daindridge ., Interferometric sensors for dc measurands: a new class of fiber sensors , Proc. SPIE 718, OE/Fibers '86 , Cambridge, MA , 1986 . Google Scholar C. A. Wade and A. Dandridge , An optical fiber flowmeter based on the Coriolis effect , Proc. SPIE 985, OE/Fibers '88 , Boston, MA , 1988 . Google Scholar W. B. Spillman , Jr. and J. R. Lord , Self-referencing multiplexing technique for intensity modulating fiber optic sensors , Proc. SPIE 718, OE/Fibers '86 , Cambridge, MA , 1986 . Google Scholar S. F. Watanabe and A. A. Joseph , Overview of multiplexing techniques for all fiber interferometer sensor arrays , Proc. SPIE 718, OE/Fibers '86 , Cambridge, MA , 1986 . Google Scholar B. Johnson , T. Lindsay , M. Marion , and R. Morton , Standard fiber optic sensor interface for aerospace applications: time domain intensity normalization , Proc. SPIE 989, OE/Fibers '88 , Boston , 1988 . Google Scholar J. A. Wysocki , G. R. Blair , and B.D. Robertson , Long-term strength of metal-coated fibers in harsh environments , vol. 2 , Physics of Fiber Optics , American Ceramic Society , Columbus, OH , 1981 , p. 134 . Google Scholar D. R. Miers , J. W. Berthold , and D. Varshneya , Life tests of optical fibers in a microbend configuration , American Ceramic Society 88th Annual Meeting , Glass Division , Chicago, IL , 1986 . Google Scholar M. Gottlieb and G. B. Brandt , Fiber-optic temperature sensor based on internally generated thermal radiation , Appl. Opt. 20 , 3408 ( 1981 ). 10.1364/AO.20.003408 CASPubMedWeb of Science®Google Scholar R. D. Hudson , Infrared System Engineering , Wiley , New York , 1969 . Google Scholar R. R. Dils , High-temperature optical fiber thermometer , J. Appl. Phys. 84 , 1198 ( 1983 ). 10.1063/1.332199 Web of Science®Google Scholar H. R. Carter and R. T. Bailey , Flame quality analyzer for temperature measurement and combustion control , Sensors 5 , 1 ( 1988 ). Google Scholar T. G. Giallorenzi , J. Bucaro and A. Daindridge ., Optical fiber sensor technology , IEEE J. Quantum Electron. 18 , 626 ( 1982 ). 10.1109/JQE.1982.1071566 Web of Science®Google Scholar J. W. Berthold , W. Ghering , and D. Varshneya ., Design and characterization of a high temperature fiber-optic pressure transducer , IEEE J. Lightwave Technol. 5 , 870 ( 1987 ). 10.1109/JLT.1987.1075594 Web of Science®Google Scholar N. Lagakos , T. Litovitz , P. Macedo , R. Mohr , and R. Meister , Multimode optical fiber displacement sensor , Appl. Opt. 20 , 167 ( 1981 ). 10.1364/AO.20.000167 CASPubMedWeb of Science®Google Scholar G. D. Pitt , Fiber optic sensors , Electron. Commun. 57 , 102 ( 1982 ). Web of Science®Google Scholar L. A. Jeffers and J. W. Berthold ., Fiber-optic readout of water level gauges , J. Opt. Soc. Of Am ., 72 , 1115 , 1982 . Web of Science®Google Scholar K. Kyuma , S. Tai , K. Hamanaka , and M. Nunoshita , Laser Doppler velocimeter with a novel optical fiber probe , Appl. Opt. 20 , 2424 ( 1981 ). 10.1364/AO.20.002424 CASPubMedWeb of Science®Google Scholar J. H. Lyle and C. W. Pitt , Vortex shedding fluid flowmeter using optic fiber sensor , Electron. Lett. 17 , 244 ( 1981 ). 10.1049/el:19810173 Web of Science®Google Scholar J. Wroblewski and E. Skuratovsky , Proc. ISA 653 S 31st International Instrumentation Symposium , San Diego, CA , 1985 . Google Scholar S. W. Flynn and B. J. Smoot , Final Report USAAVRADCOM-TR-83-D3 , July 1983 . Google Scholar D. R. Miers , D. Raj and J. W. Berthold ., Design and characterization of fiber optic accelerometers , Proc. SPIE 838, O-E/Fibers '87 , San Diego, CA , 1987 . Google Scholar W. A. Chudyk , M. M. Carrabba , and J. E. Kenney ., Remote detection of groundwater contaminants using far-ultraviolet laser-induced fluorescence , Anal. Chem. 57 , 1237 ( 1985 ). 10.1021/ac00284a017 CASWeb of Science®Google Scholar T. L. Ferrell , J. P. Goudennet , E. T. Arakawa , R. C. Reddick , R. B. Grammage , J. W. Haas , D. R. James , and E. A. Wachter ., Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds , Proceedings of the 1st International EPA Symposium on Field Screening Methods for Hazardous Waste Site Investigations , Las Vegas, NV , 1988 . Google Scholar L. A. Jeffers , Fiber optic SO 2 analyzer , Proc. SPIE 566, Fiber Optics Technology , San Diego, CA , 1985 . Google Scholar W. R. Seitz , Chemical sensors based on fiber optics , Sensors 2 , 6 ( 1985 ). Google Scholar G. W. Day , Compact sensors for the measurement of low level electric currents , Proceeding of the 4th International Conference on Optical Fiber Sensors , Tokyo , 1986 . Google Scholar K. Kyuma , S. Tai , M. Nunoshita , T. Takioka , and Y. Ida , Fiber optic measuring system for electric current using a magnetooptic sensor , IEEE Transactions on Microwave Theory and Techniques , 30 , 1607 , ( 1982 ). pt 10.1109/TMTT.1982.1131297 Google Scholar Fiber Optic Sensors: An Introduction for Engineers and Scientists, Third Edition ReferencesRelatedInformation