Distilling dynamical knowledge from stochastic reaction networks

状态空间 动力系统理论 推论 人工神经网络 弹道 随机过程 计算机科学 维数(图论) 随机神经网络 随机建模 人工智能 机器学习 循环神经网络 数学 物理 量子力学 统计 纯数学 天文
作者
Chuanbo Liu,Jin Wang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (14)
标识
DOI:10.1073/pnas.2317422121
摘要

Stochastic reaction networks are widely used in the modeling of stochastic systems across diverse domains such as biology, chemistry, physics, and ecology. However, the comprehension of the dynamic behaviors inherent in stochastic reaction networks is a formidable undertaking, primarily due to the exponential growth in the number of possible states or trajectories as the state space dimension increases. In this study, we introduce a knowledge distillation method based on reinforcement learning principles, aimed at compressing the dynamical knowledge encoded in stochastic reaction networks into a singular neural network construct. The trained neural network possesses the capability to accurately predict the state conditional joint probability distribution that corresponds to the given query contexts, when prompted with rate parameters, initial conditions, and time values. This obviates the need to track the dynamical process, enabling the direct estimation of normalized state and trajectory probabilities, without necessitating the integration over the complete state space. By applying our method to representative examples, we have observed a high degree of accuracy in both multimodal and high-dimensional systems. Additionally, the trained neural network can serve as a foundational model for developing efficient algorithms for parameter inference and trajectory ensemble generation. These results collectively underscore the efficacy of our approach as a universal means of distilling knowledge from stochastic reaction networks. Importantly, our methodology also spotlights the potential utility in harnessing a singular, pretrained, large-scale model to encapsulate the solution space underpinning a wide spectrum of stochastic dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
每念至此完成签到,获得积分10
1秒前
lll发布了新的文献求助10
1秒前
1秒前
Kyr完成签到,获得积分20
1秒前
2秒前
stt发布了新的文献求助10
2秒前
幸福台灯发布了新的文献求助10
2秒前
顾矜应助xiaoxiao采纳,获得10
2秒前
3秒前
3秒前
爆米花应助钦川采纳,获得10
3秒前
桂浩然发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
思源应助负责流口水采纳,获得10
5秒前
Jackey完成签到,获得积分10
6秒前
6秒前
缓慢迎海完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
dudu完成签到,获得积分10
9秒前
小方完成签到,获得积分10
9秒前
9秒前
9秒前
迷人依白完成签到,获得积分10
9秒前
lhy发布了新的文献求助10
9秒前
9秒前
lxy发布了新的文献求助10
9秒前
开心的吐司完成签到,获得积分10
10秒前
10秒前
夫储发布了新的文献求助10
11秒前
科研通AI6应助巴黎的防采纳,获得10
11秒前
11秒前
zybbb发布了新的文献求助10
11秒前
如意土豆完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070701
求助须知:如何正确求助?哪些是违规求助? 4291806
关于积分的说明 13371837
捐赠科研通 4112158
什么是DOI,文献DOI怎么找? 2251879
邀请新用户注册赠送积分活动 1256949
关于科研通互助平台的介绍 1189638