Distilling dynamical knowledge from stochastic reaction networks

状态空间 动力系统理论 推论 人工神经网络 弹道 随机过程 计算机科学 维数(图论) 随机神经网络 随机建模 人工智能 机器学习 循环神经网络 数学 物理 统计 量子力学 天文 纯数学
作者
Chuanbo Liu,Jin Wang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (14)
标识
DOI:10.1073/pnas.2317422121
摘要

Stochastic reaction networks are widely used in the modeling of stochastic systems across diverse domains such as biology, chemistry, physics, and ecology. However, the comprehension of the dynamic behaviors inherent in stochastic reaction networks is a formidable undertaking, primarily due to the exponential growth in the number of possible states or trajectories as the state space dimension increases. In this study, we introduce a knowledge distillation method based on reinforcement learning principles, aimed at compressing the dynamical knowledge encoded in stochastic reaction networks into a singular neural network construct. The trained neural network possesses the capability to accurately predict the state conditional joint probability distribution that corresponds to the given query contexts, when prompted with rate parameters, initial conditions, and time values. This obviates the need to track the dynamical process, enabling the direct estimation of normalized state and trajectory probabilities, without necessitating the integration over the complete state space. By applying our method to representative examples, we have observed a high degree of accuracy in both multimodal and high-dimensional systems. Additionally, the trained neural network can serve as a foundational model for developing efficient algorithms for parameter inference and trajectory ensemble generation. These results collectively underscore the efficacy of our approach as a universal means of distilling knowledge from stochastic reaction networks. Importantly, our methodology also spotlights the potential utility in harnessing a singular, pretrained, large-scale model to encapsulate the solution space underpinning a wide spectrum of stochastic dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
zhien完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
zj完成签到,获得积分10
5秒前
三七发布了新的文献求助10
7秒前
9秒前
和谐的石头完成签到,获得积分10
9秒前
斯文败类应助小杨采纳,获得10
9秒前
skycrygg发布了新的文献求助10
9秒前
正能量完成签到 ,获得积分10
9秒前
CodeCraft应助坦率尔琴采纳,获得10
10秒前
1122完成签到,获得积分10
11秒前
科研民工Jay完成签到,获得积分10
11秒前
xiaoguan发布了新的文献求助10
12秒前
CipherSage应助HaoDeng采纳,获得10
14秒前
顺利毕业完成签到,获得积分10
15秒前
15秒前
小林不会数学完成签到,获得积分10
15秒前
开心听露发布了新的文献求助10
15秒前
PDIF-CN2完成签到,获得积分10
16秒前
Orange应助孟孟采纳,获得10
17秒前
19秒前
舒心的雨双完成签到,获得积分10
19秒前
符百川发布了新的文献求助10
19秒前
顺利毕业发布了新的文献求助10
20秒前
调研昵称发布了新的文献求助10
20秒前
舒适的藏花完成签到 ,获得积分10
21秒前
skycrygg完成签到,获得积分10
23秒前
在水一方应助nanonamo采纳,获得10
24秒前
析界成微发布了新的文献求助10
25秒前
25秒前
酷波er应助开心听露采纳,获得10
26秒前
大头完成签到,获得积分10
27秒前
27秒前
28秒前
一昂杨发布了新的文献求助10
29秒前
舒心怀绿关注了科研通微信公众号
30秒前
Ava应助早睡早起采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046