Distilling dynamical knowledge from stochastic reaction networks

状态空间 动力系统理论 推论 人工神经网络 弹道 随机过程 计算机科学 维数(图论) 随机神经网络 随机建模 人工智能 机器学习 循环神经网络 数学 物理 统计 量子力学 天文 纯数学
作者
Chuanbo Liu,Jin Wang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (14)
标识
DOI:10.1073/pnas.2317422121
摘要

Stochastic reaction networks are widely used in the modeling of stochastic systems across diverse domains such as biology, chemistry, physics, and ecology. However, the comprehension of the dynamic behaviors inherent in stochastic reaction networks is a formidable undertaking, primarily due to the exponential growth in the number of possible states or trajectories as the state space dimension increases. In this study, we introduce a knowledge distillation method based on reinforcement learning principles, aimed at compressing the dynamical knowledge encoded in stochastic reaction networks into a singular neural network construct. The trained neural network possesses the capability to accurately predict the state conditional joint probability distribution that corresponds to the given query contexts, when prompted with rate parameters, initial conditions, and time values. This obviates the need to track the dynamical process, enabling the direct estimation of normalized state and trajectory probabilities, without necessitating the integration over the complete state space. By applying our method to representative examples, we have observed a high degree of accuracy in both multimodal and high-dimensional systems. Additionally, the trained neural network can serve as a foundational model for developing efficient algorithms for parameter inference and trajectory ensemble generation. These results collectively underscore the efficacy of our approach as a universal means of distilling knowledge from stochastic reaction networks. Importantly, our methodology also spotlights the potential utility in harnessing a singular, pretrained, large-scale model to encapsulate the solution space underpinning a wide spectrum of stochastic dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
DADing完成签到,获得积分20
1秒前
酷波er应助满意芯采纳,获得10
1秒前
兴奋的万声完成签到,获得积分10
1秒前
dddd完成签到,获得积分10
1秒前
王伟应助超级千青采纳,获得10
2秒前
ll应助超级千青采纳,获得10
2秒前
2秒前
鲤鱼鸽子应助djbj2022采纳,获得10
2秒前
水上书发布了新的文献求助10
3秒前
Panchael完成签到,获得积分10
3秒前
帅气的猫完成签到,获得积分10
3秒前
4秒前
单单来迟完成签到,获得积分10
5秒前
科研顺利完成签到,获得积分10
5秒前
angela完成签到,获得积分10
5秒前
日出发布了新的文献求助10
5秒前
外向的斑马完成签到 ,获得积分10
5秒前
热情蜜蜂发布了新的文献求助10
6秒前
善学以致用应助张学友采纳,获得10
6秒前
6秒前
Lucas应助乘风采纳,获得20
6秒前
李旭完成签到,获得积分10
7秒前
阿基米德完成签到,获得积分10
7秒前
liu123456完成签到,获得积分10
8秒前
梁采瑞发布了新的文献求助10
8秒前
xuzj应助开心人达采纳,获得10
8秒前
Owen应助开心人达采纳,获得10
8秒前
9秒前
科目三应助xd采纳,获得10
9秒前
10秒前
10秒前
ddd发布了新的文献求助10
10秒前
xmx发布了新的文献求助10
10秒前
11秒前
沉默的瑞宝完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助机灵的鲜花采纳,获得10
12秒前
爱宝乐宝福宝完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759