Distilling dynamical knowledge from stochastic reaction networks

状态空间 动力系统理论 推论 人工神经网络 弹道 随机过程 计算机科学 维数(图论) 随机神经网络 随机建模 人工智能 机器学习 循环神经网络 数学 物理 量子力学 统计 纯数学 天文
作者
Chuanbo Liu,Jin Wang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (14)
标识
DOI:10.1073/pnas.2317422121
摘要

Stochastic reaction networks are widely used in the modeling of stochastic systems across diverse domains such as biology, chemistry, physics, and ecology. However, the comprehension of the dynamic behaviors inherent in stochastic reaction networks is a formidable undertaking, primarily due to the exponential growth in the number of possible states or trajectories as the state space dimension increases. In this study, we introduce a knowledge distillation method based on reinforcement learning principles, aimed at compressing the dynamical knowledge encoded in stochastic reaction networks into a singular neural network construct. The trained neural network possesses the capability to accurately predict the state conditional joint probability distribution that corresponds to the given query contexts, when prompted with rate parameters, initial conditions, and time values. This obviates the need to track the dynamical process, enabling the direct estimation of normalized state and trajectory probabilities, without necessitating the integration over the complete state space. By applying our method to representative examples, we have observed a high degree of accuracy in both multimodal and high-dimensional systems. Additionally, the trained neural network can serve as a foundational model for developing efficient algorithms for parameter inference and trajectory ensemble generation. These results collectively underscore the efficacy of our approach as a universal means of distilling knowledge from stochastic reaction networks. Importantly, our methodology also spotlights the potential utility in harnessing a singular, pretrained, large-scale model to encapsulate the solution space underpinning a wide spectrum of stochastic dynamical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助ZR666888采纳,获得10
刚刚
日月归尘完成签到,获得积分10
刚刚
啵啵龙发布了新的文献求助10
3秒前
沉默棉花糖完成签到,获得积分10
4秒前
鹏程应助拼搏君浩采纳,获得10
5秒前
6秒前
老马哥完成签到 ,获得积分0
6秒前
明月念斯人完成签到 ,获得积分10
8秒前
8秒前
淡然冬灵应助锅铲采纳,获得20
9秒前
Rabbit完成签到 ,获得积分10
11秒前
11秒前
现代书雪发布了新的文献求助10
12秒前
宁霸完成签到,获得积分0
13秒前
deniroming完成签到,获得积分0
17秒前
Jasper应助ZR666888采纳,获得10
18秒前
一行完成签到,获得积分10
18秒前
壮观小懒虫完成签到 ,获得积分10
19秒前
勤恳洙应助现代书雪采纳,获得30
23秒前
29秒前
嘿嘿应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
桐桐应助刘慧鑫采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
30秒前
现代书雪完成签到,获得积分20
32秒前
33秒前
跳跃小伙完成签到 ,获得积分10
34秒前
34秒前
123345发布了新的文献求助10
35秒前
36秒前
zyyao发布了新的文献求助20
36秒前
流光发布了新的文献求助10
38秒前
Owen应助2022H采纳,获得20
38秒前
zxer发布了新的文献求助10
39秒前
乐观荣轩完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346