Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture

耳鸣 默认模式网络 卷积神经网络 显著性(神经科学) 静息状态功能磁共振成像 计算机科学 功能连接 人工智能 神经影像学 听力学 心理学 神经科学 模式识别(心理学) 医学
作者
Qianhui Xu,Leilei Zhou,Chunhua Xing,Xiaomin Xu,Yuan Feng,Han Lv,Fei Zhao,Yu‐Chen Chen,Yixi Cai
出处
期刊:NeuroImage [Elsevier]
卷期号:290: 120566-120566 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120566
摘要

Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的觅珍完成签到,获得积分10
刚刚
文静醉易发布了新的文献求助200
刚刚
田様应助一自文又欠采纳,获得30
刚刚
tqs发布了新的文献求助10
1秒前
安静的水风完成签到,获得积分20
1秒前
1秒前
khjia发布了新的文献求助10
1秒前
1秒前
考研小白发布了新的文献求助10
2秒前
duudhdh发布了新的文献求助10
2秒前
3秒前
柠檬完成签到,获得积分10
3秒前
3秒前
3秒前
mimi完成签到,获得积分10
3秒前
5秒前
5秒前
meng发布了新的文献求助10
6秒前
提速狗发布了新的文献求助100
6秒前
顺心雨双发布了新的文献求助30
6秒前
昵称发布了新的文献求助10
7秒前
Jackson完成签到,获得积分10
7秒前
8R60d8应助junxi采纳,获得10
7秒前
咯噔完成签到,获得积分10
7秒前
8秒前
慕青应助tqs采纳,获得10
8秒前
8秒前
QQ发布了新的文献求助10
8秒前
8秒前
隐形曼青应助23xyke采纳,获得10
8秒前
9秒前
lzyjcl完成签到,获得积分10
9秒前
CLareina发布了新的文献求助10
10秒前
12秒前
陈陈完成签到,获得积分10
12秒前
怕孤单的易形完成签到,获得积分10
12秒前
Orange应助考研小白采纳,获得10
13秒前
xieqq00发布了新的文献求助10
14秒前
Laisy完成签到,获得积分10
17秒前
柳行天完成签到 ,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186