Attribute-Missing Graph Clustering Network

聚类分析 计算机科学 图形 聚类系数 数据挖掘 人工智能 理论计算机科学
作者
Wenxuan Tu,Renxiang Guan,Sihang Zhou,Chuan Ma,Xin Peng,Zhiping Cai,Zhe Liu,Jieren Cheng,Xinwang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15392-15401 被引量:11
标识
DOI:10.1609/aaai.v38i14.29464
摘要

Deep clustering with attribute-missing graphs, where only a subset of nodes possesses complete attributes while those of others are missing, is an important yet challenging topic in various practical applications. It has become a prevalent learning paradigm in existing studies to perform data imputation first and subsequently conduct clustering using the imputed information. However, these ``two-stage" methods disconnect the clustering and imputation processes, preventing the model from effectively learning clustering-friendly graph embedding. Furthermore, they are not tailored for clustering tasks, leading to inferior clustering results. To solve these issues, we propose a novel Attribute-Missing Graph Clustering (AMGC) method to alternately promote clustering and imputation in a unified framework, where we iteratively produce the clustering-enhanced nearest neighbor information to conduct the data imputation process and utilize the imputed information to implicitly refine the clustering distribution through model optimization. Specifically, in the imputation step, we take the learned clustering information as imputation prompts to help each attribute-missing sample gather highly correlated features within its clusters for data completion, such that the intra-class compactness can be improved. Moreover, to support reliable clustering, we maximize inter-class separability by conducting cost-efficient dual non-contrastive learning over the imputed latent features, which in turn promotes greater graph encoding capability for clustering sub-network. Extensive experiments on five datasets have verified the superiority of AMGC against competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的小鸽子完成签到,获得积分10
2秒前
2秒前
WANGT完成签到,获得积分10
3秒前
领导范儿应助Regina采纳,获得10
4秒前
Orange应助zz采纳,获得10
5秒前
雁昔完成签到,获得积分10
6秒前
张大宝完成签到,获得积分10
6秒前
6秒前
启程牛牛完成签到,获得积分0
7秒前
张张发布了新的文献求助10
8秒前
失眠的梦之完成签到,获得积分10
9秒前
英姑应助像鱼采纳,获得10
9秒前
柳城完成签到,获得积分10
9秒前
10秒前
10秒前
大个应助GLY采纳,获得10
10秒前
10秒前
脑洞疼应助clearlove采纳,获得10
11秒前
Salt1222完成签到,获得积分10
11秒前
勇敢虫子不怕困难完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
123发布了新的文献求助10
13秒前
14秒前
迷路毛豆发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
CodeCraft应助LLLLL采纳,获得10
17秒前
18秒前
19秒前
优雅灵波发布了新的文献求助50
19秒前
zz发布了新的文献求助10
19秒前
123完成签到,获得积分10
19秒前
wangqiqi完成签到,获得积分10
20秒前
sxy发布了新的文献求助10
21秒前
温暖小猫咪完成签到,获得积分10
22秒前
mingjie完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145115
求助须知:如何正确求助?哪些是违规求助? 2796489
关于积分的说明 7819996
捐赠科研通 2452771
什么是DOI,文献DOI怎么找? 1305202
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449