Attribute-Missing Graph Clustering Network

聚类分析 计算机科学 图形 聚类系数 数据挖掘 人工智能 理论计算机科学
作者
Wenxuan Tu,Renxiang Guan,Sihang Zhou,Chuan Ma,Xin Peng,Zhiping Cai,Zhe Liu,Jieren Cheng,Xinwang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15392-15401 被引量:18
标识
DOI:10.1609/aaai.v38i14.29464
摘要

Deep clustering with attribute-missing graphs, where only a subset of nodes possesses complete attributes while those of others are missing, is an important yet challenging topic in various practical applications. It has become a prevalent learning paradigm in existing studies to perform data imputation first and subsequently conduct clustering using the imputed information. However, these ``two-stage" methods disconnect the clustering and imputation processes, preventing the model from effectively learning clustering-friendly graph embedding. Furthermore, they are not tailored for clustering tasks, leading to inferior clustering results. To solve these issues, we propose a novel Attribute-Missing Graph Clustering (AMGC) method to alternately promote clustering and imputation in a unified framework, where we iteratively produce the clustering-enhanced nearest neighbor information to conduct the data imputation process and utilize the imputed information to implicitly refine the clustering distribution through model optimization. Specifically, in the imputation step, we take the learned clustering information as imputation prompts to help each attribute-missing sample gather highly correlated features within its clusters for data completion, such that the intra-class compactness can be improved. Moreover, to support reliable clustering, we maximize inter-class separability by conducting cost-efficient dual non-contrastive learning over the imputed latent features, which in turn promotes greater graph encoding capability for clustering sub-network. Extensive experiments on five datasets have verified the superiority of AMGC against competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyJYbs完成签到,获得积分10
1秒前
聪明伊完成签到,获得积分10
1秒前
上官若男应助CJ采纳,获得10
1秒前
陈梦完成签到,获得积分10
2秒前
大个应助甜甜元槐采纳,获得10
2秒前
酷波er应助KEYANXIAOBAI采纳,获得10
3秒前
aodilee完成签到,获得积分10
3秒前
浮游应助薛定谔的猫采纳,获得10
3秒前
3秒前
星辰发布了新的文献求助10
3秒前
哈皮波完成签到,获得积分10
3秒前
zzx发布了新的文献求助10
4秒前
4秒前
默默新波完成签到 ,获得积分10
4秒前
传奇3应助王颖超采纳,获得10
4秒前
4秒前
怡然的罡完成签到,获得积分10
5秒前
April完成签到 ,获得积分10
5秒前
无花果应助热心海云采纳,获得10
6秒前
clwh2006完成签到,获得积分10
6秒前
难过以亦发布了新的文献求助10
6秒前
7秒前
传奇3应助流流采纳,获得30
7秒前
7秒前
7秒前
xiaohuhuan完成签到,获得积分10
7秒前
7秒前
8秒前
melody完成签到,获得积分20
8秒前
楠D完成签到,获得积分10
8秒前
8秒前
1234完成签到,获得积分20
9秒前
cccccc完成签到,获得积分10
9秒前
9秒前
奇犽请爱我完成签到,获得积分10
9秒前
10秒前
UGO发布了新的文献求助10
10秒前
11秒前
cf完成签到 ,获得积分10
11秒前
zengzeng完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997