亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attribute-Missing Graph Clustering Network

聚类分析 计算机科学 图形 聚类系数 数据挖掘 人工智能 理论计算机科学
作者
Wenxuan Tu,Renxiang Guan,Sihang Zhou,Chuan Ma,Xin Peng,Zhiping Cai,Zhe Liu,Jieren Cheng,Xinwang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15392-15401 被引量:18
标识
DOI:10.1609/aaai.v38i14.29464
摘要

Deep clustering with attribute-missing graphs, where only a subset of nodes possesses complete attributes while those of others are missing, is an important yet challenging topic in various practical applications. It has become a prevalent learning paradigm in existing studies to perform data imputation first and subsequently conduct clustering using the imputed information. However, these ``two-stage" methods disconnect the clustering and imputation processes, preventing the model from effectively learning clustering-friendly graph embedding. Furthermore, they are not tailored for clustering tasks, leading to inferior clustering results. To solve these issues, we propose a novel Attribute-Missing Graph Clustering (AMGC) method to alternately promote clustering and imputation in a unified framework, where we iteratively produce the clustering-enhanced nearest neighbor information to conduct the data imputation process and utilize the imputed information to implicitly refine the clustering distribution through model optimization. Specifically, in the imputation step, we take the learned clustering information as imputation prompts to help each attribute-missing sample gather highly correlated features within its clusters for data completion, such that the intra-class compactness can be improved. Moreover, to support reliable clustering, we maximize inter-class separability by conducting cost-efficient dual non-contrastive learning over the imputed latent features, which in turn promotes greater graph encoding capability for clustering sub-network. Extensive experiments on five datasets have verified the superiority of AMGC against competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phd发布了新的文献求助10
3秒前
噢斯帕斯基完成签到,获得积分20
4秒前
JamesPei应助hhh采纳,获得10
4秒前
QianYang发布了新的文献求助10
5秒前
别叫我吃饭饭饭完成签到 ,获得积分10
6秒前
无敌暴龙学神完成签到,获得积分10
14秒前
科研通AI6应助QianYang采纳,获得10
15秒前
干净寻冬应助噢斯帕斯基采纳,获得20
17秒前
俭朴山灵完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
23秒前
shenxin完成签到,获得积分10
24秒前
孙意冉完成签到,获得积分10
25秒前
旨酒欣欣应助gravity采纳,获得10
25秒前
emo发布了新的文献求助10
26秒前
Monnine发布了新的文献求助10
26秒前
香蕉觅云应助QianYang采纳,获得10
32秒前
殷楷霖发布了新的文献求助10
34秒前
35秒前
若宫伊芙应助emo采纳,获得10
35秒前
JamesPei应助Monnine采纳,获得10
38秒前
墨绝完成签到,获得积分10
38秒前
木有完成签到 ,获得积分10
39秒前
40秒前
墨绝发布了新的文献求助10
41秒前
43秒前
刻苦小鸭子完成签到,获得积分10
48秒前
青柠发布了新的文献求助10
49秒前
49秒前
llyyzzl完成签到,获得积分20
49秒前
若宫伊芙应助青柠采纳,获得10
57秒前
57秒前
HHH完成签到 ,获得积分10
57秒前
linkman发布了新的文献求助50
57秒前
llyyzzl关注了科研通微信公众号
1分钟前
1分钟前
瑶瑶啊发布了新的文献求助10
1分钟前
xpeng完成签到,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644412
求助须知:如何正确求助?哪些是违规求助? 4764051
关于积分的说明 15025013
捐赠科研通 4802816
什么是DOI,文献DOI怎么找? 2567616
邀请新用户注册赠送积分活动 1525332
关于科研通互助平台的介绍 1484790