亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attribute-Missing Graph Clustering Network

聚类分析 计算机科学 图形 聚类系数 数据挖掘 人工智能 理论计算机科学
作者
Wenxuan Tu,Renxiang Guan,Sihang Zhou,Chuan Ma,Xin Peng,Zhiping Cai,Zhe Liu,Jieren Cheng,Xinwang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15392-15401 被引量:18
标识
DOI:10.1609/aaai.v38i14.29464
摘要

Deep clustering with attribute-missing graphs, where only a subset of nodes possesses complete attributes while those of others are missing, is an important yet challenging topic in various practical applications. It has become a prevalent learning paradigm in existing studies to perform data imputation first and subsequently conduct clustering using the imputed information. However, these ``two-stage" methods disconnect the clustering and imputation processes, preventing the model from effectively learning clustering-friendly graph embedding. Furthermore, they are not tailored for clustering tasks, leading to inferior clustering results. To solve these issues, we propose a novel Attribute-Missing Graph Clustering (AMGC) method to alternately promote clustering and imputation in a unified framework, where we iteratively produce the clustering-enhanced nearest neighbor information to conduct the data imputation process and utilize the imputed information to implicitly refine the clustering distribution through model optimization. Specifically, in the imputation step, we take the learned clustering information as imputation prompts to help each attribute-missing sample gather highly correlated features within its clusters for data completion, such that the intra-class compactness can be improved. Moreover, to support reliable clustering, we maximize inter-class separability by conducting cost-efficient dual non-contrastive learning over the imputed latent features, which in turn promotes greater graph encoding capability for clustering sub-network. Extensive experiments on five datasets have verified the superiority of AMGC against competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瀛瀛完成签到 ,获得积分0
1秒前
wtl发布了新的文献求助10
2秒前
11秒前
yanghao完成签到,获得积分10
13秒前
基金中中中完成签到,获得积分10
13秒前
16秒前
17秒前
fengyun1990发布了新的文献求助10
19秒前
斯文败类应助yuanyuan采纳,获得10
19秒前
19秒前
余闻问发布了新的文献求助10
21秒前
无花果应助wtl采纳,获得10
22秒前
单薄绿竹完成签到,获得积分10
24秒前
余闻问完成签到,获得积分10
26秒前
30秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
33秒前
K先生完成签到 ,获得积分10
33秒前
光亮的安双完成签到,获得积分10
35秒前
42秒前
脑洞疼应助fengyun1990采纳,获得10
44秒前
白奕发布了新的文献求助10
48秒前
Willow完成签到,获得积分10
48秒前
49秒前
在水一方应助白奕采纳,获得30
53秒前
yuanyuan发布了新的文献求助10
54秒前
腼腆钵钵鸡完成签到 ,获得积分10
59秒前
程淑弟发布了新的文献求助10
1分钟前
xiawanren00完成签到,获得积分10
1分钟前
在水一方应助yuanyuan采纳,获得10
1分钟前
山川日月完成签到,获得积分10
1分钟前
FashionBoy应助追风采纳,获得10
1分钟前
1分钟前
黙宇循光完成签到 ,获得积分10
1分钟前
dj发布了新的文献求助20
1分钟前
king完成签到 ,获得积分10
1分钟前
上官若男应助程淑弟采纳,获得10
1分钟前
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
ayayaya完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898