Attribute-Missing Graph Clustering Network

聚类分析 计算机科学 图形 聚类系数 数据挖掘 人工智能 理论计算机科学
作者
Wenxuan Tu,Renxiang Guan,Sihang Zhou,Chuan Ma,Xin Peng,Zhiping Cai,Zhe Liu,Jieren Cheng,Xinwang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 15392-15401 被引量:18
标识
DOI:10.1609/aaai.v38i14.29464
摘要

Deep clustering with attribute-missing graphs, where only a subset of nodes possesses complete attributes while those of others are missing, is an important yet challenging topic in various practical applications. It has become a prevalent learning paradigm in existing studies to perform data imputation first and subsequently conduct clustering using the imputed information. However, these ``two-stage" methods disconnect the clustering and imputation processes, preventing the model from effectively learning clustering-friendly graph embedding. Furthermore, they are not tailored for clustering tasks, leading to inferior clustering results. To solve these issues, we propose a novel Attribute-Missing Graph Clustering (AMGC) method to alternately promote clustering and imputation in a unified framework, where we iteratively produce the clustering-enhanced nearest neighbor information to conduct the data imputation process and utilize the imputed information to implicitly refine the clustering distribution through model optimization. Specifically, in the imputation step, we take the learned clustering information as imputation prompts to help each attribute-missing sample gather highly correlated features within its clusters for data completion, such that the intra-class compactness can be improved. Moreover, to support reliable clustering, we maximize inter-class separability by conducting cost-efficient dual non-contrastive learning over the imputed latent features, which in turn promotes greater graph encoding capability for clustering sub-network. Extensive experiments on five datasets have verified the superiority of AMGC against competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao举报rh1006求助涉嫌违规
1秒前
3秒前
情怀应助二三采纳,获得10
5秒前
CCC完成签到 ,获得积分10
6秒前
6秒前
快乐马发布了新的文献求助10
6秒前
酷波er应助nn采纳,获得10
6秒前
GT发布了新的文献求助10
6秒前
刚子完成签到 ,获得积分10
10秒前
黑苹果发布了新的文献求助10
11秒前
科研通AI5应助哦哦采纳,获得10
11秒前
孤傲的静脉完成签到 ,获得积分10
12秒前
孤独的钻石完成签到,获得积分10
13秒前
Eureka完成签到 ,获得积分20
13秒前
13秒前
小蘑菇应助快乐马采纳,获得10
14秒前
仁者无惧完成签到 ,获得积分10
18秒前
echo完成签到 ,获得积分10
18秒前
浪浪山完成签到,获得积分10
19秒前
小二郎应助vict采纳,获得30
19秒前
二三发布了新的文献求助10
20秒前
烟花应助WN采纳,获得10
20秒前
blueskyzhi完成签到,获得积分10
21秒前
隐形曼青应助zy采纳,获得10
22秒前
sct完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
XS_QI完成签到 ,获得积分10
29秒前
30秒前
Eureka关注了科研通微信公众号
31秒前
JamesPei应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
ED应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
夕诙应助科研通管家采纳,获得20
33秒前
33秒前
望北完成签到 ,获得积分10
33秒前
34秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343