CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
852应助bird采纳,获得10
3秒前
勤劳紫青完成签到 ,获得积分10
3秒前
马66发布了新的文献求助10
4秒前
研友_VZG7GZ应助zzz采纳,获得10
4秒前
5秒前
owoow发布了新的文献求助10
5秒前
5秒前
领导范儿应助Messi采纳,获得10
5秒前
yang完成签到,获得积分10
5秒前
Infinit完成签到,获得积分10
6秒前
7秒前
7秒前
小猪佩奇完成签到,获得积分10
8秒前
清脆南蕾发布了新的文献求助10
9秒前
9秒前
334发布了新的文献求助10
11秒前
linkman发布了新的文献求助30
11秒前
老阎应助U9A采纳,获得20
12秒前
番茄大王完成签到,获得积分10
12秒前
13秒前
万能图书馆应助儒雅HR采纳,获得10
13秒前
荔枝吖完成签到,获得积分10
14秒前
XIAOWANG发布了新的文献求助30
14秒前
15秒前
王半书发布了新的文献求助10
16秒前
认真飞瑶发布了新的文献求助10
17秒前
清爽乐菱应助靓丽的芝麻采纳,获得50
17秒前
Akim应助动听的雪卉采纳,获得10
17秒前
科目三应助渊思采纳,获得10
18秒前
ding应助清脆南蕾采纳,获得10
19秒前
lee完成签到 ,获得积分10
21秒前
行止发布了新的文献求助10
22秒前
25秒前
愉悦完成签到,获得积分10
25秒前
Hello应助XIAOWANG采纳,获得10
26秒前
26秒前
28秒前
xz完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578