清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分0
15秒前
跳跃的鹏飞完成签到 ,获得积分0
21秒前
海英完成签到,获得积分10
26秒前
luobote完成签到 ,获得积分10
33秒前
吕佳完成签到 ,获得积分10
34秒前
限量版小祸害完成签到 ,获得积分10
37秒前
qiqi完成签到,获得积分10
39秒前
40秒前
我是老大应助Joy采纳,获得10
44秒前
qiqiqiqiqi完成签到 ,获得积分10
44秒前
Singularity完成签到,获得积分0
45秒前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xgx984完成签到,获得积分10
1分钟前
共享精神应助keke采纳,获得10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
大模型应助Zhuyin采纳,获得10
1分钟前
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
2分钟前
mengqing发布了新的文献求助10
2分钟前
2分钟前
coding完成签到,获得积分10
2分钟前
Lucas应助积极香菜采纳,获得10
2分钟前
玺青一生完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
呼延坤完成签到 ,获得积分10
2分钟前
阿泽发布了新的文献求助10
2分钟前
非我完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310