CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYT完成签到,获得积分10
1秒前
100发布了新的文献求助10
2秒前
2秒前
3秒前
酷波er应助一二采纳,获得10
3秒前
123上发布了新的文献求助10
3秒前
独木舟完成签到,获得积分10
3秒前
落后的铭关注了科研通微信公众号
4秒前
LP发布了新的文献求助30
4秒前
dd完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
花花完成签到,获得积分10
10秒前
10秒前
CipherSage应助Lanyiyang采纳,获得10
10秒前
外向的沅完成签到,获得积分20
11秒前
鱼子酱发布了新的文献求助10
12秒前
Bai完成签到,获得积分10
12秒前
积极雁发布了新的文献求助10
12秒前
12秒前
共享精神应助小程同学采纳,获得10
13秒前
温柔寄文完成签到 ,获得积分10
14秒前
bzp发布了新的文献求助10
15秒前
17秒前
19秒前
斯文钢笔完成签到 ,获得积分10
20秒前
深情安青应助嘟嘟嘟嘟采纳,获得10
20秒前
章章伟华完成签到,获得积分10
22秒前
共享精神应助Kiki采纳,获得10
22秒前
酷波er应助犹豫的猫咪采纳,获得10
22秒前
跳跃的香岚完成签到,获得积分10
22秒前
细心无声完成签到,获得积分10
24秒前
kekekelili完成签到,获得积分10
24秒前
24秒前
24秒前
Lucas应助lalalal采纳,获得10
26秒前
华仔应助积极雁采纳,获得10
27秒前
温婉的灵阳完成签到 ,获得积分10
27秒前
ZML发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469879
求助须知:如何正确求助?哪些是违规求助? 3063087
关于积分的说明 9081400
捐赠科研通 2753353
什么是DOI,文献DOI怎么找? 1510835
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028