已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
orixero应助海阔天空采纳,获得10
2秒前
西吴完成签到 ,获得积分10
2秒前
张振宇完成签到 ,获得积分10
3秒前
5秒前
小丑鱼儿完成签到 ,获得积分10
5秒前
轻松棉花糖完成签到 ,获得积分10
6秒前
渴望者完成签到,获得积分10
7秒前
韩祖完成签到 ,获得积分10
8秒前
呼延水云发布了新的文献求助10
9秒前
andrele应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
wanci应助科研通管家采纳,获得10
11秒前
呼延水云完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
20秒前
张文博完成签到,获得积分10
21秒前
畅快自行车完成签到,获得积分10
21秒前
五上村雨发布了新的文献求助10
23秒前
24秒前
嘉子完成签到 ,获得积分10
27秒前
开心初阳发布了新的文献求助10
29秒前
小研大究完成签到,获得积分10
30秒前
拼搏的寒凝完成签到 ,获得积分10
30秒前
U87完成签到,获得积分10
32秒前
34秒前
怂怂鼠完成签到,获得积分10
36秒前
闲鱼电脑完成签到,获得积分10
39秒前
Gun完成签到,获得积分10
42秒前
43秒前
贪玩的谷芹完成签到 ,获得积分0
43秒前
短腿小柯基完成签到 ,获得积分10
45秒前
春鸮鸟完成签到 ,获得积分10
47秒前
钮祜禄萱完成签到 ,获得积分10
48秒前
开心初阳完成签到 ,获得积分10
49秒前
我是老大应助weiwei采纳,获得30
51秒前
开心的梦柏完成签到 ,获得积分10
54秒前
AteeqBaloch完成签到,获得积分10
55秒前
56秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606459
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866330
捐赠科研通 4705808
什么是DOI,文献DOI怎么找? 2542698
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276