清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴静完成签到 ,获得积分10
8秒前
50秒前
shhoing应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
tt完成签到,获得积分10
1分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
Able完成签到,获得积分10
4分钟前
jqliu发布了新的文献求助30
4分钟前
廷烨完成签到 ,获得积分10
5分钟前
雪狐417完成签到 ,获得积分10
5分钟前
爆米花应助tomorrow采纳,获得10
6分钟前
可靠的平彤完成签到,获得积分10
6分钟前
6分钟前
tomorrow完成签到,获得积分10
6分钟前
tomorrow发布了新的文献求助10
6分钟前
啊哒吸哇完成签到,获得积分10
6分钟前
张同学快去做实验呀完成签到,获得积分10
7分钟前
8分钟前
8分钟前
科研通AI6应助儒雅的夏翠采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
wanci应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
儒雅的夏翠完成签到,获得积分10
9分钟前
英俊的铭应助冷艳的萝莉采纳,获得30
9分钟前
10分钟前
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
10分钟前
阔达的沛文完成签到,获得积分10
11分钟前
11分钟前
Alanni完成签到 ,获得积分10
11分钟前
冷艳的萝莉完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558620
求助须知:如何正确求助?哪些是违规求助? 4643690
关于积分的说明 14671377
捐赠科研通 4584977
什么是DOI,文献DOI怎么找? 2515302
邀请新用户注册赠送积分活动 1489369
关于科研通互助平台的介绍 1460113