CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
刚刚
candleshi完成签到,获得积分10
刚刚
Xu发布了新的文献求助10
刚刚
freebird应助会飞的鱼采纳,获得10
刚刚
1秒前
跳跃飞瑶发布了新的文献求助10
1秒前
1秒前
1秒前
温暖的颜演完成签到 ,获得积分10
2秒前
Hello应助Mininine采纳,获得10
2秒前
2秒前
自觉的香彤完成签到,获得积分10
2秒前
3秒前
Orange应助达奚多思采纳,获得10
3秒前
3秒前
贾硕士发布了新的文献求助10
3秒前
太阳能之子完成签到,获得积分10
3秒前
ZCM关闭了ZCM文献求助
3秒前
4秒前
繁星完成签到,获得积分10
4秒前
一颗苹果完成签到 ,获得积分10
4秒前
超帅的遥发布了新的文献求助10
4秒前
生信好难完成签到,获得积分10
5秒前
5秒前
小苏打完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Sumengyan发布了新的文献求助10
7秒前
Lucas应助自觉的香彤采纳,获得10
8秒前
8秒前
8秒前
XIAONIE25发布了新的文献求助10
8秒前
8秒前
8秒前
嘻嘻发布了新的文献求助10
8秒前
9秒前
小管发布了新的文献求助10
10秒前
科研通AI6应助风中的芷蕾采纳,获得10
10秒前
Luke完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285