CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凡凡应助虚心的小兔子采纳,获得10
1秒前
FashionBoy应助欢乐通采纳,获得10
2秒前
2秒前
CodeCraft应助泥巴采纳,获得10
3秒前
恰恰恰发布了新的文献求助10
3秒前
3秒前
黄则已发布了新的文献求助10
4秒前
香蕉觅云应助sfliufighting采纳,获得10
5秒前
Liu完成签到 ,获得积分10
6秒前
7秒前
佛说一缘完成签到 ,获得积分10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
魁梧的听荷完成签到 ,获得积分10
11秒前
12秒前
帽子戏法发布了新的文献求助10
12秒前
zhuling发布了新的文献求助10
14秒前
14秒前
14秒前
聪明的老太完成签到,获得积分10
15秒前
15秒前
puhong zhang发布了新的文献求助10
16秒前
1774181866完成签到,获得积分10
16秒前
就爱炸元宵完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
ween发布了新的文献求助19
18秒前
小蘑菇应助hcsharp采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
sfliufighting发布了新的文献求助10
20秒前
wanci应助Michael采纳,获得10
21秒前
昏睡的傲蕾完成签到,获得积分10
21秒前
八二力完成签到 ,获得积分10
22秒前
22秒前
852应助yzm采纳,获得30
22秒前
冲冲冲应助小龚采纳,获得10
23秒前
fryeia发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329