CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dh发布了新的文献求助10
刚刚
Stefano完成签到,获得积分10
刚刚
刚刚
完美世界应助念薇采纳,获得10
刚刚
郭倍坚发布了新的文献求助10
1秒前
年轻绮南完成签到,获得积分10
1秒前
ROSE完成签到 ,获得积分10
1秒前
斯文败类应助红3采纳,获得10
2秒前
Ccc发布了新的文献求助30
2秒前
2秒前
2秒前
典雅之云完成签到,获得积分10
2秒前
慕容誉完成签到 ,获得积分10
2秒前
斯文败类应助yimi采纳,获得10
2秒前
SciGPT应助有魅力的猫咪采纳,获得10
3秒前
3秒前
在下小李发布了新的文献求助10
3秒前
4秒前
4秒前
不得发布了新的文献求助20
4秒前
夏夏发布了新的文献求助10
5秒前
TongXia发布了新的文献求助10
5秒前
我要读博士完成签到 ,获得积分10
5秒前
完美世界应助cz采纳,获得10
6秒前
静加油完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
F503完成签到,获得积分10
6秒前
han完成签到,获得积分10
6秒前
SciGPT应助hyx采纳,获得10
6秒前
和谐越彬发布了新的文献求助10
7秒前
7秒前
7秒前
缥缈的背包完成签到,获得积分10
7秒前
jiyixiao1完成签到,获得积分10
7秒前
8秒前
lili发布了新的文献求助10
8秒前
可靠的雨筠完成签到,获得积分10
8秒前
科研通AI6应助晓竹采纳,获得10
9秒前
FashionBoy应助Blowga采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827