CcDPM: A Continuous Conditional Diffusion Probabilistic Model for Inverse Design

概率逻辑 反向 扩散 计量经济学 统计物理学 计算机科学 数学 应用数学 统计 物理 几何学 热力学
作者
Yanxuan Zhao,Peng Zhang,Guopeng Sun,Zhigong Yang,Jianqiang Chen,Yueqing Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 17033-17041 被引量:1
标识
DOI:10.1609/aaai.v38i15.29647
摘要

Engineering design methods aim to generate new designs that meet desired performance requirements. Past work has directly introduced conditional Generative Adversarial Networks (cGANs) into this field and achieved promising results in single-point design problems(one performance requirement under one working condition). However, these methods assume that the performance requirements are distributed in categorical space, which is not reasonable in these scenarios. Although Continuous conditional GANs (CcGANs) introduce Vicinal Risk Minimization (VRM) to reduce the performance loss caused by this assumption, they still face the following challenges: 1) CcGANs can not handle multi-point design problems (multiple performance requirements under multiple working conditions). 2) Their training process is time-consuming due to the high computational complexity of the vicinal loss. To address these issues, A Continuous conditional Diffusion Probabilistic Model (CcDPM) is proposed, which the first time introduces the diffusion model into the engineering design area and VRM into the diffusion model. CcDPM adopts a novel sampling method called multi-point design sampling to deal with multi-point design problems. Moreover, the k-d tree is used in the training process of CcDPM to shorten the calculation time of vicinal loss and speed up the training process by 2-300 times in our experiments. Experiments on a synthetic problem and three real-world design problems demonstrate that CcDPM outperforms the state-of-the-art GAN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴灵完成签到,获得积分10
刚刚
飞鸿影下完成签到 ,获得积分10
1秒前
ding应助白水采纳,获得10
1秒前
Yvan完成签到,获得积分10
1秒前
2秒前
喵喵完成签到 ,获得积分10
2秒前
云草发布了新的文献求助10
2秒前
yanchen完成签到,获得积分10
4秒前
guozizi发布了新的文献求助30
4秒前
在水一方应助火羊宝采纳,获得10
4秒前
Fayth发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
一期一会完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
newma完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
奇犽请爱我完成签到,获得积分10
6秒前
李健应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
percy发布了新的文献求助10
6秒前
啊桂发布了新的文献求助10
6秒前
6秒前
yueyue完成签到,获得积分10
6秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517