A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study

数字减影血管造影 医学 阶段(地层学) 放射科 血管造影 计算机断层血管造影 医学物理学 人工智能 计算机科学 生物 古生物学
作者
Bin Hu,Zhao Shi,Lu Li,Zhongchang Miao,Hao Wang,Zhen Zhou,Fandong Zhang,Rongpin Wang,Xiao Luo,Feng Xu,Sheng Li,Xiangming Fang,Xiaodong Wang,Ge Yan,Fajin Lv,Meng Zhang,Qiu Sun,Guangbin Cui,Yubao Liu,S Zhang,Chengwei Pan,Zhibo Hou,Huiying Liang,Yuning Pan,Xiaoxia Chen,Xiaorong Li,Fei Zhou,U. Joseph Schoepf,Ákos Varga‐Szemes,W.Garrison Moore,Yizhou Yu,Chunfeng Hu,Long Jiang Zhang,Bin Hu,Zhao Shi,Li Xia Lu,Miao Zhongchang,Hao Wang,Zhen Zhou,Fandong Zhang,Rongpin Wang,Xiao Luo,Feng Xu,Sheng Li,Xiangming Fang,Xiaodong Wang,Ge Yan,Fajin Lv,Meng Zhang,Qiu Sun,Guangbin Cui,Yubao Liu,S Zhang,Chengwei Pan,Zhibo Hou,Huiying Liang,Yuning Pan,Xiaoxia Chen,Xiaorong Li,Fei Zhou,Bin Tan,Feidi Liu,Feng Chen,Hongmei Gu,Mingli Hou,Rui Xu,Rui Zuo,B. Hu,Weiwei Chen,Xue Chai,Wulin Wang,Yongjian Dai,Yueqin Chen,Changsheng Zhou,Guangming Lu,U. Joseph Schoepf,W.Garrison Moore,Ákos Varga‐Szemes,Yizhou Yu,Chunfeng Hu,Long Jiang Zhang
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e261-e271 被引量:10
标识
DOI:10.1016/s2589-7500(23)00268-6
摘要

BackgroundArtificial intelligence (AI) models in real-world implementation are scarce. Our study aimed to develop a CT angiography (CTA)-based AI model for intracranial aneurysm detection, assess how it helps clinicians improve diagnostic performance, and validate its application in real-world clinical implementation.MethodsWe developed a deep-learning model using 16 546 head and neck CTA examination images from 14 517 patients at eight Chinese hospitals. Using an adapted, stepwise implementation and evaluation, 120 certified clinicians from 15 geographically different hospitals were recruited. Initially, the AI model was externally validated with images of 900 digital subtraction angiography-verified CTA cases (examinations) and compared with the performance of 24 clinicians who each viewed 300 of these cases (stage 1). Next, as a further external validation a multi-reader multi-case study enrolled 48 clinicians to individually review 298 digital subtraction angiography-verified CTA cases (stage 2). The clinicians reviewed each CTA examination twice (ie, with and without the AI model), separated by a 4-week washout period. Then, a randomised open-label comparison study enrolled 48 clinicians to assess the acceptance and performance of this AI model (stage 3). Finally, the model was prospectively deployed and validated in 1562 real-world clinical CTA cases.FindingsThe AI model in the internal dataset achieved a patient-level diagnostic sensitivity of 0·957 (95% CI 0·939–0·971) and a higher patient-level diagnostic sensitivity than clinicians (0·943 [0·921–0·961] vs 0·658 [0·644–0·672]; p<0·0001) in the external dataset. In the multi-reader multi-case study, the AI-assisted strategy improved clinicians' diagnostic performance both on a per-patient basis (the area under the receiver operating characteristic curves [AUCs]; 0·795 [0·761–0·830] without AI vs 0·878 [0·850–0·906] with AI; p<0·0001) and a per-aneurysm basis (the area under the weighted alternative free-response receiver operating characteristic curves; 0·765 [0·732–0·799] vs 0·865 [0·839–0·891]; p<0·0001). Reading time decreased with the aid of the AI model (87·5 s vs 82·7 s, p<0·0001). In the randomised open-label comparison study, clinicians in the AI-assisted group had a high acceptance of the AI model (92·6% adoption rate), and a higher AUC when compared with the control group (0·858 [95% CI 0·850–0·866] vs 0·789 [0·780–0·799]; p<0·0001). In the prospective study, the AI model had a 0·51% (8/1570) error rate due to poor-quality CTA images and recognition failure. The model had a high negative predictive value of 0·998 (0·994–1·000) and significantly improved the diagnostic performance of clinicians; AUC improved from 0·787 (95% CI 0·766–0·808) to 0·909 (0·894–0·923; p<0·0001) and patient-level sensitivity improved from 0·590 (0·511–0·666) to 0·825 (0·759–0·880; p<0·0001).InterpretationThis AI model demonstrated strong clinical potential for intracranial aneurysm detection with improved clinician diagnostic performance, high acceptance, and practical implementation in real-world clinical cases.FundingNational Natural Science Foundation of China.TranslationFor the Chinese translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
去看海嘛发布了新的文献求助10
刚刚
CodeCraft应助光亮猫咪采纳,获得10
刚刚
2725293751完成签到,获得积分20
刚刚
ganson发布了新的文献求助10
刚刚
鲤鱼完成签到,获得积分10
刚刚
Archy完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
乐观学姐完成签到,获得积分10
3秒前
万能图书馆应助Kk采纳,获得10
4秒前
6秒前
安_完成签到 ,获得积分10
6秒前
杳鸢应助Jacky采纳,获得20
6秒前
彼岸花发布了新的文献求助30
7秒前
7秒前
烟城完成签到,获得积分10
7秒前
7秒前
微笑完成签到,获得积分10
8秒前
鲸鱼阿扑发布了新的文献求助20
8秒前
鲤鱼发布了新的文献求助10
9秒前
9秒前
10秒前
tg2024发布了新的文献求助10
10秒前
仲夏完成签到,获得积分10
10秒前
彭于晏应助怕孤独的寒梦采纳,获得10
11秒前
11秒前
11秒前
zhao发布了新的文献求助10
12秒前
LGF发布了新的文献求助10
13秒前
光亮猫咪发布了新的文献求助10
13秒前
小孟吖发布了新的文献求助10
14秒前
隐形曼青应助鲜艳的手链采纳,获得10
15秒前
15秒前
刻苦的黑米完成签到,获得积分10
16秒前
Acetonitrile应助long采纳,获得20
16秒前
落寒发布了新的文献求助10
16秒前
16秒前
小蘑菇应助HEIGE采纳,获得50
16秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254658
求助须知:如何正确求助?哪些是违规求助? 2896872
关于积分的说明 8294754
捐赠科研通 2565788
什么是DOI,文献DOI怎么找? 1393363
科研通“疑难数据库(出版商)”最低求助积分说明 652508
邀请新用户注册赠送积分活动 630044