已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study

数字减影血管造影 医学 阶段(地层学) 放射科 血管造影 计算机断层血管造影 医学物理学 人工智能 计算机科学 生物 古生物学
作者
Bin Hu,Zhao Shi,Lu Li,Zhongchang Miao,Hao Wang,Zhen Zhou,Fandong Zhang,Rongpin Wang,Xiao Luo,Feng Xu,Sheng Li,Xiangming Fang,Xiaodong Wang,Ge Yan,Fajin Lv,Meng Zhang,Qiu Sun,Guangbin Cui,Yubao Liu,S Zhang
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e261-e271 被引量:30
标识
DOI:10.1016/s2589-7500(23)00268-6
摘要

BackgroundArtificial intelligence (AI) models in real-world implementation are scarce. Our study aimed to develop a CT angiography (CTA)-based AI model for intracranial aneurysm detection, assess how it helps clinicians improve diagnostic performance, and validate its application in real-world clinical implementation.MethodsWe developed a deep-learning model using 16 546 head and neck CTA examination images from 14 517 patients at eight Chinese hospitals. Using an adapted, stepwise implementation and evaluation, 120 certified clinicians from 15 geographically different hospitals were recruited. Initially, the AI model was externally validated with images of 900 digital subtraction angiography-verified CTA cases (examinations) and compared with the performance of 24 clinicians who each viewed 300 of these cases (stage 1). Next, as a further external validation a multi-reader multi-case study enrolled 48 clinicians to individually review 298 digital subtraction angiography-verified CTA cases (stage 2). The clinicians reviewed each CTA examination twice (ie, with and without the AI model), separated by a 4-week washout period. Then, a randomised open-label comparison study enrolled 48 clinicians to assess the acceptance and performance of this AI model (stage 3). Finally, the model was prospectively deployed and validated in 1562 real-world clinical CTA cases.FindingsThe AI model in the internal dataset achieved a patient-level diagnostic sensitivity of 0·957 (95% CI 0·939–0·971) and a higher patient-level diagnostic sensitivity than clinicians (0·943 [0·921–0·961] vs 0·658 [0·644–0·672]; p<0·0001) in the external dataset. In the multi-reader multi-case study, the AI-assisted strategy improved clinicians' diagnostic performance both on a per-patient basis (the area under the receiver operating characteristic curves [AUCs]; 0·795 [0·761–0·830] without AI vs 0·878 [0·850–0·906] with AI; p<0·0001) and a per-aneurysm basis (the area under the weighted alternative free-response receiver operating characteristic curves; 0·765 [0·732–0·799] vs 0·865 [0·839–0·891]; p<0·0001). Reading time decreased with the aid of the AI model (87·5 s vs 82·7 s, p<0·0001). In the randomised open-label comparison study, clinicians in the AI-assisted group had a high acceptance of the AI model (92·6% adoption rate), and a higher AUC when compared with the control group (0·858 [95% CI 0·850–0·866] vs 0·789 [0·780–0·799]; p<0·0001). In the prospective study, the AI model had a 0·51% (8/1570) error rate due to poor-quality CTA images and recognition failure. The model had a high negative predictive value of 0·998 (0·994–1·000) and significantly improved the diagnostic performance of clinicians; AUC improved from 0·787 (95% CI 0·766–0·808) to 0·909 (0·894–0·923; p<0·0001) and patient-level sensitivity improved from 0·590 (0·511–0·666) to 0·825 (0·759–0·880; p<0·0001).InterpretationThis AI model demonstrated strong clinical potential for intracranial aneurysm detection with improved clinician diagnostic performance, high acceptance, and practical implementation in real-world clinical cases.FundingNational Natural Science Foundation of China.TranslationFor the Chinese translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
happy_zz发布了新的文献求助20
5秒前
栗悟饭与龟波功完成签到,获得积分10
6秒前
活力的访梦完成签到,获得积分10
7秒前
9秒前
负责语海发布了新的文献求助10
10秒前
11秒前
11秒前
找找完成签到,获得积分10
12秒前
sx发布了新的文献求助10
14秒前
落雪完成签到 ,获得积分10
15秒前
今后应助负责语海采纳,获得10
16秒前
点点完成签到,获得积分10
16秒前
哈哈哈哈完成签到 ,获得积分10
16秒前
缓慢的破茧完成签到 ,获得积分10
17秒前
动听的谷秋完成签到 ,获得积分10
17秒前
Afliea完成签到,获得积分20
19秒前
20秒前
乐乐应助浮浮世世采纳,获得10
20秒前
赘婿应助活力的访梦采纳,获得10
21秒前
Yikao完成签到 ,获得积分10
21秒前
24秒前
敬业乐群完成签到,获得积分10
25秒前
晚风挽清欢完成签到 ,获得积分10
27秒前
30秒前
SciGPT应助大宝君采纳,获得30
32秒前
细心怀亦完成签到 ,获得积分10
32秒前
此时此刻完成签到 ,获得积分10
34秒前
34秒前
tr银完成签到,获得积分10
34秒前
35秒前
搜集达人应助霸气的幻香采纳,获得10
36秒前
浮浮世世发布了新的文献求助10
37秒前
上官枫完成签到 ,获得积分10
37秒前
ShangNiNE完成签到 ,获得积分10
37秒前
言辞完成签到,获得积分10
39秒前
共享精神应助Shelly采纳,获得10
40秒前
40秒前
FangzhnengChen完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049