亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [MDPI AG]
卷期号:15 (4): 404-404 被引量:1
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助敏敏9813采纳,获得10
6秒前
晓风完成签到 ,获得积分10
10秒前
丘比特应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
fairy完成签到 ,获得积分10
1分钟前
Criminology34发布了新的文献求助500
2分钟前
sissiarno应助科研通管家采纳,获得30
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
淡然的剑通完成签到 ,获得积分10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
Mavis完成签到 ,获得积分10
3分钟前
彼得力完成签到 ,获得积分10
4分钟前
4分钟前
敏敏9813发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
7分钟前
Kamalika发布了新的文献求助200
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
晨雾锁阳完成签到 ,获得积分10
8分钟前
落落洛栖完成签到 ,获得积分10
8分钟前
YH完成签到,获得积分10
8分钟前
研友_ngJlbL完成签到,获得积分10
9分钟前
Artin发布了新的文献求助30
9分钟前
9分钟前
li199624发布了新的文献求助10
10分钟前
10分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
浮游应助科研通管家采纳,获得10
11分钟前
原子超人完成签到,获得积分10
11分钟前
深情安青应助想游泳的鹰采纳,获得10
11分钟前
Jourmore完成签到,获得积分0
11分钟前
wodetaiyangLLL完成签到 ,获得积分10
12分钟前
粗犷的迎松完成签到,获得积分10
12分钟前
12分钟前
绮罗完成签到 ,获得积分10
12分钟前
糖配坤完成签到 ,获得积分10
12分钟前
嘻嘻哈哈应助CRUSADER采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292203
求助须知:如何正确求助?哪些是违规求助? 4442851
关于积分的说明 13830518
捐赠科研通 4326199
什么是DOI,文献DOI怎么找? 2374727
邀请新用户注册赠送积分活动 1370025
关于科研通互助平台的介绍 1334428