DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 404-404 被引量:1
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇发布了新的文献求助30
2秒前
会飞的猪发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
务实的鞯完成签到,获得积分10
5秒前
科研通AI6应助yy采纳,获得10
5秒前
5秒前
要减肥的镜子完成签到,获得积分10
6秒前
7秒前
FlipFlops完成签到,获得积分10
8秒前
8秒前
蓝天应助阿尔文采纳,获得10
8秒前
生动梦松应助科研通管家采纳,获得10
8秒前
不安冷风应助科研通管家采纳,获得10
9秒前
fifteen应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
ricky应助科研通管家采纳,获得10
9秒前
不安冷风应助科研通管家采纳,获得10
9秒前
卤鸡腿应助科研通管家采纳,获得20
9秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
不安冷风应助科研通管家采纳,获得10
10秒前
生动梦松应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888