亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 404-404 被引量:1
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助谦让的思枫采纳,获得10
3秒前
felix完成签到,获得积分10
7秒前
全或无完成签到,获得积分10
7秒前
林利芳完成签到 ,获得积分0
9秒前
ppg123应助科研通管家采纳,获得10
21秒前
yx_cheng应助科研通管家采纳,获得30
21秒前
dong应助科研通管家采纳,获得10
21秒前
yx_cheng应助科研通管家采纳,获得30
21秒前
ppg123应助科研通管家采纳,获得20
21秒前
打打应助科研通管家采纳,获得10
21秒前
555557应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
风中黎昕完成签到 ,获得积分10
22秒前
23秒前
谦让的思枫完成签到,获得积分10
24秒前
26秒前
28秒前
32秒前
37秒前
40秒前
狸子完成签到,获得积分10
44秒前
45秒前
54秒前
Akim应助烟火还是永恒采纳,获得10
54秒前
跳跃太清完成签到 ,获得积分10
58秒前
wzzznh发布了新的文献求助30
59秒前
1分钟前
1分钟前
精明的大船完成签到,获得积分20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
搜集达人应助木子木采纳,获得10
1分钟前
tangtang完成签到,获得积分10
1分钟前
003完成签到,获得积分10
1分钟前
桐桐应助ceeray23采纳,获得20
1分钟前
ferritin完成签到 ,获得积分10
1分钟前
Ava应助夜雨声烦采纳,获得10
1分钟前
科研通AI2S应助tangtang采纳,获得10
1分钟前
zhangyu应助狸子采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994889
求助须知:如何正确求助?哪些是违规求助? 3535040
关于积分的说明 11267040
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762