亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [MDPI AG]
卷期号:15 (4): 404-404 被引量:1
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助沉醉的中国钵采纳,获得20
8秒前
whimsyhui完成签到,获得积分20
20秒前
Yuki完成签到 ,获得积分10
25秒前
35秒前
54秒前
牛哥还是强啊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
sheadenchu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
Wang完成签到 ,获得积分20
2分钟前
YifanWang完成签到,获得积分0
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
万能图书馆应助CC采纳,获得30
4分钟前
科目三应助沉醉的中国钵采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
磷酸丙糖异构酶完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助雪山飞龙采纳,获得10
4分钟前
lanxinge完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
wanci应助科研通管家采纳,获得50
5分钟前
量子星尘发布了新的文献求助10
5分钟前
pjjpk01完成签到,获得积分10
5分钟前
5分钟前
CC发布了新的文献求助30
5分钟前
矜持完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
激动的55完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622291
求助须知:如何正确求助?哪些是违规求助? 4707352
关于积分的说明 14939095
捐赠科研通 4770394
什么是DOI,文献DOI怎么找? 2552301
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085