DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks

剪接 残余物 计算生物学 计算机科学 人工智能 生物 遗传学 基因 算法
作者
Xueyan Liu,Hongyan Zhang,Ying Zeng,Xinghui Zhu,Lei Zhu,Jia Fu
出处
期刊:Genes [MDPI AG]
卷期号:15 (4): 404-404
标识
DOI:10.3390/genes15040404
摘要

The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer’s superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer’s excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术垃圾发布了新的文献求助10
2秒前
搜集达人应助羽渡尘采纳,获得10
2秒前
谷谷完成签到,获得积分20
3秒前
华仔应助SilentRP采纳,获得10
6秒前
丘比特应助默默的以松采纳,获得10
7秒前
Lucas应助严小赖采纳,获得10
9秒前
12秒前
pokikiii完成签到,获得积分10
12秒前
13秒前
斯文败类应助LYHHHH涵采纳,获得10
15秒前
18秒前
20秒前
SciGPT应助ll采纳,获得10
21秒前
顺利如冰完成签到,获得积分10
21秒前
852应助怕黑的丝袜采纳,获得10
24秒前
24秒前
清爽子默完成签到,获得积分10
25秒前
小蘑菇应助谷谷采纳,获得10
26秒前
SilentRP发布了新的文献求助10
26秒前
ding应助圆圆方方采纳,获得10
27秒前
without完成签到,获得积分20
28秒前
陈奕之完成签到,获得积分10
29秒前
maox1aoxin应助姜太公采纳,获得60
30秒前
30秒前
冷静的白枫完成签到,获得积分10
31秒前
jjb123666完成签到,获得积分20
32秒前
ZSQ发布了新的文献求助10
33秒前
36秒前
37秒前
37秒前
ZSQ完成签到,获得积分20
38秒前
大个应助大气的雁桃采纳,获得10
40秒前
李爱国应助成就的曼梅采纳,获得10
40秒前
41秒前
ll发布了新的文献求助10
42秒前
42秒前
43秒前
44秒前
谷谷发布了新的文献求助10
46秒前
鸣风完成签到 ,获得积分10
46秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919