亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Threat Intelligence with Non-IID Data in Federated Learning enabled Intrusion Detection for SDN: An Experimental Study

入侵检测系统 计算机科学 入侵防御系统 计算机安全 入侵 计算机网络 地球化学 地质学
作者
Syed Hussain Ali Kazmi,Faizan Qamar,Rosilah Hassan,Kashif Nisar,Dahlila Putri Binti Dahnil,Mohammed Azmi Al‐Betar
标识
DOI:10.1109/acit58888.2023.10453867
摘要

In the realm of cybersecurity, the ever-evolving threat landscape necessitates innovative approaches to design Intrusion Detection Systems (IDS). Software-Defined Networking (SDN) integrated with Deep Learning (DL) has emerged as a transformative paradigm of threat intelligence in IDS. However, centralized data processing in DL based IDS causes privacy issues. Within this context, Federated Learning (FL) has gained significant attention for its potential to enhance intrusion detection while maintaining privacy. This study presents an experimental investigation into the efficacy of FL-enabled intrusion detection in SDN environments, specifically addressing the challenging aspect of threat specific features selection in Non-IID (Non-Independently and Identically Distributed) data. We used the InSDN intrusion dataset containing different attacks including Denial-of-Service (DoS), Distributed-DoS (DDoS), brute force, probe, web and botnet attacks. After data pre-processing, Principal Component Analysis (PCA) is applied to analyze the impact of Non-IID data on features importance. The detailed results of simulations show large variations in features importance for Non-IID data in terms of quantity and threat type distribution. Furthermore, we discuss the implications of our results for future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
han发布了新的文献求助10
3秒前
8秒前
DD完成签到 ,获得积分10
12秒前
希望天下0贩的0应助Re采纳,获得10
19秒前
19秒前
21秒前
23秒前
Re完成签到,获得积分10
25秒前
ding应助ss采纳,获得10
34秒前
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
1分钟前
1分钟前
在水一方完成签到,获得积分0
1分钟前
ss发布了新的文献求助10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
NexusExplorer应助chxericdong采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
chxericdong完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639664
求助须知:如何正确求助?哪些是违规求助? 4749580
关于积分的说明 15007025
捐赠科研通 4797830
什么是DOI,文献DOI怎么找? 2563907
邀请新用户注册赠送积分活动 1522813
关于科研通互助平台的介绍 1482510