Diffusion Generative Model-Based Learning for Smart Layer-Wise Monitoring of Additive Manufacturing

计算机科学 相似性(几何) 人工智能 核(代数) 生成模型 样品(材料) 水准点(测量) 机器学习 噪音(视频) 公制(单位) 生成语法 模式识别(心理学) 数据挖掘 图像(数学) 数学 工程类 化学 运营管理 大地测量学 色谱法 组合数学 地理
作者
Emmanuel Yangue,Durant Fullington,Owen F. Smith,Wenmeng Tian,Chenang Liu
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (6) 被引量:3
标识
DOI:10.1115/1.4065092
摘要

Abstract Despite the rapid adoption of deep learning models in additive manufacturing (AM), significant quality assurance challenges continue to persist. This is further emphasized by the limited availability of sample objects for monitoring AM-fabricated builds. Thus, this study advances an emerging diffusion generative model, i.e., the denoising diffusion implicit model (DDIM), for layer-wise image augmentation and monitoring in AM. The generative model can be used to generate potential layer-wise variations, which can be further studied to understand their causation and prevent their occurrence. The proposed models integrate two proposed kernel-based distance metrics into the DDIM framework for effective layer-wise AM image augmentation. These newly proposed metrics include a modified version of the kernel inception distance (m-KID) as well as an integration of m-KID and the inception score (IS) termed KID-IS. These novel integrations demonstrate great potential for maintaining both similarity and consistency in AM layer-wise image augmentation, while simultaneously exploring possible unobserved process variations. In the case study, six different cases based on both metal-based and polymer-based fused filament fabrication (FFF) are examined. The results indicate that both the proposed DDIM/m-KID and DDIM/KID-IS models outperform the four benchmark methods, including the popular denoising diffusion probabilistic models (DDPMs), and three other generative adversarial networks (GANs). Overall, DDIM/KID-IS emerges as the best-performing model with an average KID score of 0.840, m-KID score of 0.1185, peak signal-to-noise ratio (PSNR) of 18.150, and structural similarity index measure (SSIM) of 0.173, which demonstrated strong capabilities in generating potential AM process variations in terms of layer-wise images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
11发布了新的文献求助10
刚刚
刚刚
刚刚
IL556完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助asd采纳,获得30
2秒前
羊康完成签到,获得积分10
3秒前
3秒前
3秒前
不问归期的风完成签到,获得积分0
3秒前
4秒前
所所应助飘逸寄瑶采纳,获得10
4秒前
Patronus发布了新的文献求助10
4秒前
4秒前
酷波er应助朱宣诚采纳,获得10
5秒前
5秒前
花灯王子发布了新的文献求助10
5秒前
5秒前
6秒前
spc68应助33采纳,获得10
6秒前
hbydyy发布了新的文献求助10
7秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
充电宝应助XHW采纳,获得10
9秒前
刺槐发布了新的文献求助10
9秒前
zyme发布了新的文献求助10
10秒前
nkuhao完成签到,获得积分10
10秒前
10秒前
liyuxuan完成签到,获得积分10
10秒前
科研通AI2S应助哈哈哈哈哈采纳,获得30
11秒前
llt发布了新的文献求助10
11秒前
JamesPei应助yy123采纳,获得10
11秒前
轻松忆翠完成签到,获得积分10
12秒前
12秒前
Ava应助ash采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Hello应助lucky采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450