SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models

基础(证据) 基因组 DNA 计算生物学 分辨率(逻辑) 核苷酸 遗传学 生物 计算机科学 基因 程序设计语言 政治学 法学
作者
Bernardo P. de Almeida,Hugo Dalla-Torre,Guillaume Richard,Christopher Blum,Lorenz Hexemer,Maxence Gélard,Javier Mendoza‐Revilla,Priyanka Pandey,Stefan Laurent,Marie Lopez,Alexandre Laterre,Maren Lang,Uğur Şahin,Karim Beguir,Thomas Pierrot
标识
DOI:10.1101/2024.03.14.584712
摘要

Foundation models have achieved remarkable success in several fields such as natural language processing, computer vision and more recently biology. DNA foundation models in particular are emerging as a promising approach for genomics. However, so far no model has delivered granular, nucleotide-level predictions across a wide range of genomic and regulatory elements, limiting their practical usefulness. In this paper, we build on our previous work on the Nucleotide Transformer (NT) to develop a segmentation model, SegmentNT, that processes input DNA sequences up to 30kb-long to predict 14 different classes of genomic elements at single nucleotide resolution. By utilizing pre-trained weights from NT, SegmentNT surpasses the performance of several ablation models, including convolution networks with one-hot encoded nucleotide sequences and models trained from scratch. SegmentNT can process multiple sequence lengths with zero-shot generalization for sequences of up to 50kb. We show improved performance on the detection of splice sites throughout the genome and demonstrate strong nucleotide-level precision. Because it evaluates all gene elements simultaneously, SegmentNT can predict the impact of sequence variants not only on splice site changes but also on exon and intron rearrangements in transcript isoforms. Finally, we show that a SegmentNT model trained on human genomic elements can generalize to elements of different human and plant species and that a trained multispecies SegmentNT model achieves stronger generalization for all genic elements on unseen species. In summary, SegmentNT demonstrates that DNA foundation models can tackle complex, granular tasks in genomics at a single-nucleotide resolution. SegmentNT can be easily extended to additional genomic elements and species, thus representing a new paradigm on how we analyze and interpret DNA. We make our SegmentNT-30kb human and multispecies models available on our github repository in Jax and HuggingFace space in Pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
momo完成签到,获得积分10
1秒前
慕青应助饕餮1235采纳,获得10
1秒前
小蘑菇应助CC采纳,获得10
2秒前
白白完成签到,获得积分10
2秒前
2秒前
2秒前
苏苏完成签到,获得积分10
3秒前
3秒前
wu完成签到,获得积分10
3秒前
3秒前
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助111采纳,获得10
5秒前
Accept应助wintercyan采纳,获得20
5秒前
哲999完成签到,获得积分10
5秒前
Mian完成签到,获得积分10
5秒前
6秒前
6秒前
于嗣濠完成签到 ,获得积分10
6秒前
36456657应助CC采纳,获得10
6秒前
优雅山柏发布了新的文献求助10
7秒前
Jacky完成签到,获得积分10
7秒前
脑洞疼应助无情的白桃采纳,获得10
7秒前
mm发布了新的文献求助10
7秒前
8秒前
8秒前
zoko发布了新的文献求助10
8秒前
8秒前
曾经的臻发布了新的文献求助10
8秒前
华仔应助S1mple_gentleman采纳,获得10
8秒前
科研通AI5应助CC采纳,获得10
8秒前
8秒前
9秒前
9秒前
张静静完成签到,获得积分10
10秒前
10秒前
震666发布了新的文献求助30
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740