清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models

基础(证据) 基因组 DNA 计算生物学 分辨率(逻辑) 核苷酸 遗传学 生物 计算机科学 基因 程序设计语言 政治学 法学
作者
Bernardo P. de Almeida,Hugo Dalla-Torre,Guillaume Richard,Christopher Blum,Lorenz Hexemer,Maxence Gélard,Javier Mendoza‐Revilla,Priyanka Pandey,Stefan Laurent,Marie Lopez,Alexandre Laterre,Maren Lang,Uğur Şahin,Karim Beguir,Thomas Pierrot
标识
DOI:10.1101/2024.03.14.584712
摘要

Foundation models have achieved remarkable success in several fields such as natural language processing, computer vision and more recently biology. DNA foundation models in particular are emerging as a promising approach for genomics. However, so far no model has delivered granular, nucleotide-level predictions across a wide range of genomic and regulatory elements, limiting their practical usefulness. In this paper, we build on our previous work on the Nucleotide Transformer (NT) to develop a segmentation model, SegmentNT, that processes input DNA sequences up to 30kb-long to predict 14 different classes of genomic elements at single nucleotide resolution. By utilizing pre-trained weights from NT, SegmentNT surpasses the performance of several ablation models, including convolution networks with one-hot encoded nucleotide sequences and models trained from scratch. SegmentNT can process multiple sequence lengths with zero-shot generalization for sequences of up to 50kb. We show improved performance on the detection of splice sites throughout the genome and demonstrate strong nucleotide-level precision. Because it evaluates all gene elements simultaneously, SegmentNT can predict the impact of sequence variants not only on splice site changes but also on exon and intron rearrangements in transcript isoforms. Finally, we show that a SegmentNT model trained on human genomic elements can generalize to elements of different human and plant species and that a trained multispecies SegmentNT model achieves stronger generalization for all genic elements on unseen species. In summary, SegmentNT demonstrates that DNA foundation models can tackle complex, granular tasks in genomics at a single-nucleotide resolution. SegmentNT can be easily extended to additional genomic elements and species, thus representing a new paradigm on how we analyze and interpret DNA. We make our SegmentNT-30kb human and multispecies models available on our github repository in Jax and HuggingFace space in Pytorch.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
8秒前
小糊涂仙儿完成签到 ,获得积分10
14秒前
梅溪湖的提词器完成签到,获得积分10
15秒前
笑傲完成签到,获得积分10
16秒前
30秒前
桃七发布了新的文献求助10
35秒前
上官若男应助Developing_human采纳,获得10
39秒前
44秒前
1分钟前
1分钟前
wy.he应助桃七采纳,获得10
1分钟前
sam42发布了新的文献求助10
1分钟前
科研通AI6应助Yatagarasu采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
彭于晏应助Developing_human采纳,获得10
2分钟前
xue完成签到 ,获得积分10
2分钟前
2分钟前
沈惠映完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
冇_完成签到 ,获得积分10
3分钟前
poki完成签到 ,获得积分10
3分钟前
kevin完成签到 ,获得积分10
4分钟前
闪闪的MX完成签到,获得积分10
4分钟前
4分钟前
知悉发布了新的文献求助10
4分钟前
你好棒呀完成签到,获得积分10
5分钟前
sam42完成签到,获得积分10
5分钟前
顾矜应助研友_8RyzBZ采纳,获得10
5分钟前
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
凤迎雪飘完成签到,获得积分10
5分钟前
5分钟前
HYQ完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766528
关于积分的说明 15025981
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568190
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175