SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models

基础(证据) 基因组 DNA 计算生物学 分辨率(逻辑) 核苷酸 遗传学 生物 计算机科学 基因 程序设计语言 政治学 法学
作者
Bernardo P. de Almeida,Hugo Dalla-Torre,Guillaume Richard,Christopher Blum,Lorenz Hexemer,Maxence Gélard,Javier Mendoza‐Revilla,Priyanka Pandey,Stefan Laurent,Marie Lopez,Alexandre Laterre,Maren Lang,Uğur Şahin,Karim Beguir,Thomas Pierrot
标识
DOI:10.1101/2024.03.14.584712
摘要

Foundation models have achieved remarkable success in several fields such as natural language processing, computer vision and more recently biology. DNA foundation models in particular are emerging as a promising approach for genomics. However, so far no model has delivered granular, nucleotide-level predictions across a wide range of genomic and regulatory elements, limiting their practical usefulness. In this paper, we build on our previous work on the Nucleotide Transformer (NT) to develop a segmentation model, SegmentNT, that processes input DNA sequences up to 30kb-long to predict 14 different classes of genomic elements at single nucleotide resolution. By utilizing pre-trained weights from NT, SegmentNT surpasses the performance of several ablation models, including convolution networks with one-hot encoded nucleotide sequences and models trained from scratch. SegmentNT can process multiple sequence lengths with zero-shot generalization for sequences of up to 50kb. We show improved performance on the detection of splice sites throughout the genome and demonstrate strong nucleotide-level precision. Because it evaluates all gene elements simultaneously, SegmentNT can predict the impact of sequence variants not only on splice site changes but also on exon and intron rearrangements in transcript isoforms. Finally, we show that a SegmentNT model trained on human genomic elements can generalize to elements of different human and plant species and that a trained multispecies SegmentNT model achieves stronger generalization for all genic elements on unseen species. In summary, SegmentNT demonstrates that DNA foundation models can tackle complex, granular tasks in genomics at a single-nucleotide resolution. SegmentNT can be easily extended to additional genomic elements and species, thus representing a new paradigm on how we analyze and interpret DNA. We make our SegmentNT-30kb human and multispecies models available on our github repository in Jax and HuggingFace space in Pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助儒雅的乐珍采纳,获得10
1秒前
3秒前
4秒前
帝国超级硕士完成签到,获得积分10
5秒前
鲤鱼初柳发布了新的文献求助10
7秒前
爆米花应助shenaikyt采纳,获得10
7秒前
热心的寒天完成签到,获得积分10
7秒前
8秒前
汤汤完成签到 ,获得积分10
10秒前
King发布了新的文献求助10
11秒前
11秒前
11秒前
领导范儿应助鲤鱼初柳采纳,获得10
12秒前
12秒前
hoho完成签到,获得积分10
12秒前
14秒前
不会写诗完成签到 ,获得积分10
15秒前
17秒前
17秒前
17秒前
18秒前
科研通AI2S应助Deseorz采纳,获得10
18秒前
搜集达人应助Drew采纳,获得20
19秒前
20秒前
小马甲应助Hcw0525采纳,获得10
20秒前
高文强发布了新的文献求助10
21秒前
在水一方应助lala采纳,获得10
21秒前
23秒前
23秒前
激动的手链完成签到,获得积分10
23秒前
23秒前
23秒前
当年风又止完成签到,获得积分10
24秒前
顾矜应助GXC0304采纳,获得10
24秒前
科科发布了新的文献求助10
24秒前
英俊的铭应助King采纳,获得10
24秒前
xzy998完成签到,获得积分0
24秒前
葡萄发布了新的文献求助10
25秒前
子车茗应助远山采纳,获得10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170410
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935169
捐赠科研通 2481933
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608