重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

SegmentNT: annotating the genome at single-nucleotide resolution with DNA foundation models

基础(证据) 基因组 DNA 计算生物学 分辨率(逻辑) 核苷酸 遗传学 生物 计算机科学 基因 程序设计语言 政治学 法学
作者
Bernardo P. de Almeida,Hugo Dalla-Torre,Guillaume Richard,Christopher Blum,Lorenz Hexemer,Maxence Gélard,Javier Mendoza‐Revilla,Priyanka Pandey,Stefan Laurent,Marie Lopez,Alexandre Laterre,Maren Lang,Uğur Şahin,Karim Beguir,Thomas Pierrot
标识
DOI:10.1101/2024.03.14.584712
摘要

Foundation models have achieved remarkable success in several fields such as natural language processing, computer vision and more recently biology. DNA foundation models in particular are emerging as a promising approach for genomics. However, so far no model has delivered granular, nucleotide-level predictions across a wide range of genomic and regulatory elements, limiting their practical usefulness. In this paper, we build on our previous work on the Nucleotide Transformer (NT) to develop a segmentation model, SegmentNT, that processes input DNA sequences up to 30kb-long to predict 14 different classes of genomic elements at single nucleotide resolution. By utilizing pre-trained weights from NT, SegmentNT surpasses the performance of several ablation models, including convolution networks with one-hot encoded nucleotide sequences and models trained from scratch. SegmentNT can process multiple sequence lengths with zero-shot generalization for sequences of up to 50kb. We show improved performance on the detection of splice sites throughout the genome and demonstrate strong nucleotide-level precision. Because it evaluates all gene elements simultaneously, SegmentNT can predict the impact of sequence variants not only on splice site changes but also on exon and intron rearrangements in transcript isoforms. Finally, we show that a SegmentNT model trained on human genomic elements can generalize to elements of different human and plant species and that a trained multispecies SegmentNT model achieves stronger generalization for all genic elements on unseen species. In summary, SegmentNT demonstrates that DNA foundation models can tackle complex, granular tasks in genomics at a single-nucleotide resolution. SegmentNT can be easily extended to additional genomic elements and species, thus representing a new paradigm on how we analyze and interpret DNA. We make our SegmentNT-30kb human and multispecies models available on our github repository in Jax and HuggingFace space in Pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助kio采纳,获得10
1秒前
蛰伏完成签到,获得积分10
1秒前
1秒前
北风完成签到,获得积分10
1秒前
闲出屁国公主完成签到 ,获得积分10
1秒前
hilm应助LiuY采纳,获得80
1秒前
搜集达人应助hao采纳,获得10
3秒前
满意怜容发布了新的文献求助10
3秒前
3秒前
浮游应助小王要努力采纳,获得10
3秒前
蛰伏发布了新的文献求助10
4秒前
阔达的海发布了新的文献求助10
6秒前
yoyoAT完成签到,获得积分10
6秒前
浮游应助hzauhzau采纳,获得10
7秒前
Afra发布了新的文献求助10
7秒前
大个应助xu采纳,获得10
7秒前
JamesPei应助执着柏柳采纳,获得10
8秒前
8秒前
清逸之风发布了新的文献求助10
8秒前
Felicity发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Akim应助害羞采萱采纳,获得10
11秒前
12秒前
Sirius完成签到,获得积分20
12秒前
xupeng发布了新的文献求助20
12秒前
cdercder发布了新的文献求助10
12秒前
Turquiose0522完成签到,获得积分10
12秒前
落寞的元菱完成签到,获得积分10
12秒前
勤劳傲安完成签到,获得积分10
12秒前
13秒前
14秒前
小猪佩奇完成签到,获得积分10
15秒前
风清扬发布了新的文献求助10
15秒前
天天快乐应助小张采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516