氟化锂
金属锂
锂(药物)
阳极
金属
化学工程
材料科学
无机化学
电解质
盐(化学)
化学
冶金
电极
有机化学
物理化学
医学
工程类
内分泌学
作者
Bereket Woldegbreal Taklu,Wei‐Nien Su,Jeng-Chian Chiou,Chia‐Yu Chang,Yosef Nikodimos,Keseven Lakshmanan,Teklay Mezgebe Hagos,Gashahun Gobena Serbessa,Gidey Bahre Desta,Teshager Mekonnen Tekaligne,Shadab Ali Ahmed,Sheng‐Chiang Yang,She‐Huang Wu,Bing‐Joe Hwang
标识
DOI:10.1021/acsami.3c17559
摘要
The use of the "Holy Grail" lithium metal anode is pivotal to achieve superior energy density. However, the practice of a lithium metal anode faces practical challenges due to the thermodynamic instability of lithium metal and dendrite growth. Herein, an artificial stabilization of lithium metal was carried out via the thermal pyrolysis of the NH4F salt, which generates HF(g) and NH3(g). An exposure of lithium metal to the generated gas induces a spontaneous reaction that forms multiple solid electrolyte interface (SEI) components, such as LiF, Li3N, Li2NH, LiNH2, and LiH, from a single salt. The artificially multilayered protection on lithium metal (AF-Li) sustains stable lithium stripping/plating. It suppresses the Li dendrite under the Li||Li symmetric cell. The half-cell Li||Cu and Li||MCMB systems depicted the attributions of the protective layer. We demonstrate that the desirable protective layer in AF-Li exhibited remarkable capacity retention (CR) results. LiFePO4 (LFP) showed a CR of 90.6% at 0.5 mA cm-2 after 280 cycles, and LiNi0.5Mn0.3Co0.2O2 (NCM523) showed 58.7% at 3 mA cm-2 after 410 cycles. Formulating the multilayered protection, with the simultaneous formation of multiple SEI components in a facile and cost-effective approach from NH4F as a single salt, made the system competent.
科研通智能强力驱动
Strongly Powered by AbleSci AI