Effect of Graphene Diameter on Heat Transfer Pathways in Graphene/PVDF Nanocomposite Membranes

石墨烯 纳米复合材料 材料科学 复合材料 纳米技术 化学 生物化学
作者
Li Xiang,Yuanyuan Mei,Xiaohui Yang,Zhonglin Cao,Shuhao Qin,Lisheng Chen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (7): 7694-7702 被引量:1
标识
DOI:10.1021/acsanm.4c00371
摘要

Modification of polymers by using high thermal conductivity fillers has become a common strategy for enhancing thermal conductivity. The low thermal conductivity of poly(vinylidene fluoride) (PVDF) limits its development and application in the field of heat dissipation. The distinctive phonon mode exhibited by reduced graphene oxide (RGO) demonstrates exceptional thermal conductivity. In this study, PVDF served as the matrix, and composite membranes were prepared by incorporating nanothermal conductive material (graphene). The objective of enhancing the thermal conductivity has been achieved. Experimental outcomes were derived through characterization. RGO sheets smaller than 10 μm were observed to maintain the external surface morphology of the membrane unchanged. The porosity exhibited a gradual increase with growing lamellar diameters. The membrane's thermal conductivity demonstrated an initial rise followed by a subsequent decline. The peak value reached 0.15 W/m K when the RGO size ranged from 1 to 3 μm. However, further enlargement of the graphene size resulted in a significant decrease in the thermal conductivity. The presence of large pores, induced by larger-size RGOs in PVDF, had a pronounced adverse impact on the membrane's thermal conductivity. The size, surface microstructure, dosage, and composite morphology of thermally conductive particles play a pivotal role in influencing mechanical, electrical, thermal, viscosity, structural control, and processability aspects. Thus, comprehending the morphology of thermally conductive particles holds significance in the exploration, formulation, and advancement of thermally conductive polymer materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
澳澳发布了新的文献求助10
1秒前
2秒前
清脆的映天完成签到,获得积分10
2秒前
yl驳回了sweetbearm应助
2秒前
隐形曼青应助2鱼采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
香蕉觅云应助junzilan采纳,获得10
3秒前
张老涵发布了新的文献求助10
3秒前
灌饼发布了新的文献求助30
3秒前
罗实发布了新的文献求助10
3秒前
张张发布了新的文献求助10
4秒前
木香发布了新的文献求助10
4秒前
朴实以松发布了新的文献求助10
4秒前
在水一方应助神帅酷哥采纳,获得10
4秒前
5秒前
5秒前
pipge发布了新的文献求助30
5秒前
5秒前
万能图书馆应助卡卡采纳,获得10
5秒前
牛虫虫发布了新的文献求助30
6秒前
6秒前
柔弱飞雪完成签到,获得积分10
6秒前
一种信仰完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
YE完成签到,获得积分10
8秒前
2鱼完成签到,获得积分10
8秒前
FooLeup立仔完成签到,获得积分10
8秒前
9秒前
顾矜应助JUll采纳,获得10
9秒前
Amai发布了新的文献求助20
9秒前
小马甲应助Lucas采纳,获得10
9秒前
10秒前
zZ发布了新的文献求助10
10秒前
qi完成签到,获得积分10
11秒前
标致缘郡发布了新的文献求助10
11秒前
miawei完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794