清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vehicle lane-change intention recognition based on BiLSTM Attention model for the Internet of vehicles

计算机科学 互联网 运输工程 人工智能 工程类 万维网
作者
Yufeng Chen,Haofan Cao,Zhengtao Xiang,Bo Chen,Yingkui Ma,Yu Zhang
出处
标识
DOI:10.1177/09544070241240225
摘要

In terms of lane-changing and other driver actions, precise identification of the intentions of nearby vehicles is crucial to autonomous vehicle performance safety. At present, research in this domain primarily focuses on ideal environments without considering data packet loss. Therefore, this paper considered the impact of packet loss in the Internet of Vehicles on the performance of the lane change intent recognition model. To achieve this, an enhanced BiLSTM Attention model, which combines the bidirectional long short-term memory network structure and attention mechanism, is proposed based on LSTM. The NGSIM (Next Generation Simulation) dataset was utilized to extract vehicle lane-change behaviors for model training and testing. A long short-term memory (LSTM) model was employed to conduct comparative experiments using various input frequencies and packet loss rates. The performance of the proposed BiLSTM Attention model was evaluated through ablation experiments. A comparison was made between the model’s performance in the absence of packet loss and its performance under a scenario with 30% packet loss. Additionally, the impact of continuous packet loss on the recognition of the lane-change intent model was analyzed. Experiments show that it outperforms basic LSTM and BiLSTM models, including the LSTM Attention method, with impressive improvements of 7.84%, 2.22%, and 4.89% (F1 macro ) and 2.83%, 1.03%, and 2.18% for the area under the receiver operating characteristic curve (AUC), respectively. Even under extreme (30%) packet loss conditions, the proposed model outperforms the same models by 8.23%, 2.68%, and 5.38% (F1 macro ) and 2.94%, 1.03%, and 2.29% (AUC), respectively. For 30% packet loss, the proposed model’s performance decreased by 0.108% (F1 macro ) and 0.102% (AUC); however, the LSTM, BiLSTM, and LSTM Attention model performances decreased by 0.468% and 0.209%, 0.554% and 0.103%, and 0.569% and 0.208% for F1 macro and AUC, respectively. Thus, the proposed model is the least affected by packet loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人类后腿发布了新的文献求助10
24秒前
25秒前
poki完成签到 ,获得积分10
26秒前
37秒前
xmsyq完成签到 ,获得积分10
38秒前
荣浩宇完成签到 ,获得积分10
47秒前
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
人类后腿完成签到,获得积分20
1分钟前
弹剑作歌完成签到,获得积分10
1分钟前
孙晓燕完成签到 ,获得积分10
2分钟前
2分钟前
ukz37752应助科研通管家采纳,获得50
2分钟前
2分钟前
2分钟前
西西娃儿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
西西娃儿发布了新的文献求助10
2分钟前
沧海一粟米完成签到 ,获得积分10
2分钟前
3分钟前
自由擎汉发布了新的文献求助10
3分钟前
3分钟前
朔月发布了新的文献求助10
3分钟前
朔月完成签到,获得积分10
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
清秀尔竹完成签到 ,获得积分10
4分钟前
4分钟前
GPTea应助科研通管家采纳,获得200
4分钟前
4分钟前
5分钟前
5分钟前
yangyueqiong发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292936
求助须知:如何正确求助?哪些是违规求助? 4443310
关于积分的说明 13831046
捐赠科研通 4326824
什么是DOI,文献DOI怎么找? 2375129
邀请新用户注册赠送积分活动 1370450
关于科研通互助平台的介绍 1335055