Vehicle lane-change intention recognition based on BiLSTM Attention model for the Internet of vehicles

计算机科学 互联网 运输工程 人工智能 工程类 万维网
作者
Yufeng Chen,Haofan Cao,Zhengtao Xiang,Bo Chen,Yingkui Ma,Yu Zhang
标识
DOI:10.1177/09544070241240225
摘要

In terms of lane-changing and other driver actions, precise identification of the intentions of nearby vehicles is crucial to autonomous vehicle performance safety. At present, research in this domain primarily focuses on ideal environments without considering data packet loss. Therefore, this paper considered the impact of packet loss in the Internet of Vehicles on the performance of the lane change intent recognition model. To achieve this, an enhanced BiLSTM Attention model, which combines the bidirectional long short-term memory network structure and attention mechanism, is proposed based on LSTM. The NGSIM (Next Generation Simulation) dataset was utilized to extract vehicle lane-change behaviors for model training and testing. A long short-term memory (LSTM) model was employed to conduct comparative experiments using various input frequencies and packet loss rates. The performance of the proposed BiLSTM Attention model was evaluated through ablation experiments. A comparison was made between the model’s performance in the absence of packet loss and its performance under a scenario with 30% packet loss. Additionally, the impact of continuous packet loss on the recognition of the lane-change intent model was analyzed. Experiments show that it outperforms basic LSTM and BiLSTM models, including the LSTM Attention method, with impressive improvements of 7.84%, 2.22%, and 4.89% (F1 macro ) and 2.83%, 1.03%, and 2.18% for the area under the receiver operating characteristic curve (AUC), respectively. Even under extreme (30%) packet loss conditions, the proposed model outperforms the same models by 8.23%, 2.68%, and 5.38% (F1 macro ) and 2.94%, 1.03%, and 2.29% (AUC), respectively. For 30% packet loss, the proposed model’s performance decreased by 0.108% (F1 macro ) and 0.102% (AUC); however, the LSTM, BiLSTM, and LSTM Attention model performances decreased by 0.468% and 0.209%, 0.554% and 0.103%, and 0.569% and 0.208% for F1 macro and AUC, respectively. Thus, the proposed model is the least affected by packet loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
买桃子去发布了新的文献求助10
1秒前
稳重的烙发布了新的文献求助10
2秒前
Ava应助强仔采纳,获得10
3秒前
3秒前
4秒前
4秒前
6秒前
6秒前
FashionBoy应助单薄纸飞机采纳,获得10
8秒前
Evelyn发布了新的文献求助10
8秒前
Hello应助科研狗采纳,获得10
9秒前
小青发布了新的文献求助10
9秒前
买桃子去完成签到,获得积分10
10秒前
Amanda完成签到 ,获得积分20
10秒前
11秒前
12秒前
谦让紫发布了新的文献求助10
12秒前
nini发布了新的文献求助10
12秒前
15秒前
12345完成签到,获得积分10
15秒前
15秒前
科目三应助ZeSir采纳,获得10
15秒前
情怀应助wmmm采纳,获得10
16秒前
lhy完成签到,获得积分10
17秒前
胡楠完成签到,获得积分10
17秒前
强仔发布了新的文献求助10
17秒前
温暖宛筠完成签到,获得积分10
17秒前
青柠关注了科研通微信公众号
18秒前
勤劳滑板发布了新的文献求助10
18秒前
研友_VZG7GZ应助敏er采纳,获得10
19秒前
鲤鱼又菡发布了新的文献求助10
19秒前
20秒前
20秒前
huangsi发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
柔柔完成签到,获得积分10
22秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425