Differences in running technique between runners with better and poorer running economy and lower and higher milage: An artificial neural network approach

运行经济 矢状面 运动学 脚踝 摇摆 物理医学与康复 膝关节屈曲 人工神经网络 数学 冠状面 后备箱 步态周期 计算机科学 物理疗法 医学 人工智能 工程类 物理 解剖 生物 血压 心率 最大VO2 机械工程 生态学 经典力学 放射科
作者
Bas Van Hooren,Rebecca Lennartz,Maartje Cox,Fabian Hoitz,Guy Plasqui,Kenneth Meijer
出处
期刊:Scandinavian Journal of Medicine & Science in Sports [Wiley]
卷期号:34 (3)
标识
DOI:10.1111/sms.14605
摘要

Abstract Background Prior studies investigated selected discrete sagittal‐plane outcomes (e.g., peak knee flexion) in relation to running economy, hereby discarding the potential relevance of running technique parameters during noninvestigated phases of the gait cycle and in other movement planes. Purpose Investigate which components of running technique distinguish groups of runners with better and poorer economy and higher and lower weekly running distance using an artificial neural network (ANN) approach with layer‐wise relevance propagation. Methods Forty‐one participants (22 males and 19 females) ran at 2.78 m∙s −1 while three‐dimensional kinematics and gas exchange data were collected. Two groups were created that differed in running economy or weekly training distance. The three‐dimensional kinematic data were used as input to an ANN to predict group allocations. Layer‐wise relevance propagation was used to determine the relevance of three‐dimensional kinematics for group classification. Results The ANN classified runners in the correct economy or distance group with accuracies of up to 62% and 71%, respectively. Knee, hip, and ankle flexion were most relevant to both classifications. Runners with poorer running economy showed higher knee flexion during swing, more hip flexion during early stance, and more ankle extension after toe‐off. Runners with higher running distance showed less trunk rotation during swing. Conclusion The ANN accuracy was moderate when predicting whether runners had better, or poorer running economy, or had a higher or lower weekly training distance based on their running technique. The kinematic components that contributed the most to the classification may nevertheless inform future research and training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助白夜采纳,获得10
1秒前
evanyg关注了科研通微信公众号
1秒前
今后应助闾丘惜寒采纳,获得10
3秒前
4秒前
apocalypse完成签到 ,获得积分10
5秒前
zzz发布了新的文献求助10
7秒前
7秒前
wanci应助yy采纳,获得10
8秒前
宜醉宜游宜睡应助杨凤艳采纳,获得10
9秒前
9秒前
10秒前
在水一方应助veblem采纳,获得10
14秒前
toto完成签到 ,获得积分10
14秒前
怨气冲天完成签到,获得积分10
14秒前
zzz完成签到,获得积分20
15秒前
爆米花应助达da采纳,获得10
17秒前
lin应助Lin.隽采纳,获得10
19秒前
机灵夏云完成签到,获得积分10
21秒前
曾经枫发布了新的文献求助10
21秒前
fifteen应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
善良夜梅应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
Billy应助科研通管家采纳,获得20
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
今后应助科研通管家采纳,获得10
22秒前
Billy应助科研通管家采纳,获得30
22秒前
Hello应助科研通管家采纳,获得10
22秒前
fifteen应助科研通管家采纳,获得10
22秒前
23秒前
喵喵84完成签到,获得积分10
25秒前
haha6完成签到,获得积分10
28秒前
善学以致用应助Wa采纳,获得10
29秒前
29秒前
优美从菡发布了新的文献求助10
32秒前
汀66完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260002
求助须知:如何正确求助?哪些是违规求助? 2901401
关于积分的说明 8315255
捐赠科研通 2570914
什么是DOI,文献DOI怎么找? 1396737
科研通“疑难数据库(出版商)”最低求助积分说明 653558
邀请新用户注册赠送积分活动 631952