Differences in running technique between runners with better and poorer running economy and lower and higher milage: An artificial neural network approach

运行经济 矢状面 运动学 脚踝 摇摆 物理医学与康复 膝关节屈曲 人工神经网络 数学 冠状面 后备箱 步态周期 计算机科学 物理疗法 医学 人工智能 工程类 物理 解剖 生物 血压 心率 最大VO2 机械工程 生态学 经典力学 放射科
作者
Bas Van Hooren,Rebecca Lennartz,Maartje Cox,Fabian Hoitz,Guy Plasqui,Kenneth Meijer
出处
期刊:Scandinavian Journal of Medicine & Science in Sports [Wiley]
卷期号:34 (3)
标识
DOI:10.1111/sms.14605
摘要

Abstract Background Prior studies investigated selected discrete sagittal‐plane outcomes (e.g., peak knee flexion) in relation to running economy, hereby discarding the potential relevance of running technique parameters during noninvestigated phases of the gait cycle and in other movement planes. Purpose Investigate which components of running technique distinguish groups of runners with better and poorer economy and higher and lower weekly running distance using an artificial neural network (ANN) approach with layer‐wise relevance propagation. Methods Forty‐one participants (22 males and 19 females) ran at 2.78 m∙s −1 while three‐dimensional kinematics and gas exchange data were collected. Two groups were created that differed in running economy or weekly training distance. The three‐dimensional kinematic data were used as input to an ANN to predict group allocations. Layer‐wise relevance propagation was used to determine the relevance of three‐dimensional kinematics for group classification. Results The ANN classified runners in the correct economy or distance group with accuracies of up to 62% and 71%, respectively. Knee, hip, and ankle flexion were most relevant to both classifications. Runners with poorer running economy showed higher knee flexion during swing, more hip flexion during early stance, and more ankle extension after toe‐off. Runners with higher running distance showed less trunk rotation during swing. Conclusion The ANN accuracy was moderate when predicting whether runners had better, or poorer running economy, or had a higher or lower weekly training distance based on their running technique. The kinematic components that contributed the most to the classification may nevertheless inform future research and training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity完成签到 ,获得积分10
刚刚
Benliu完成签到,获得积分10
刚刚
csq发布了新的文献求助10
1秒前
2秒前
Hello应助外向的醉易采纳,获得10
2秒前
DWWWDAADAD完成签到,获得积分10
5秒前
科研通AI5应助一天八杯水采纳,获得10
6秒前
杨大仙儿完成签到 ,获得积分10
6秒前
8秒前
坚强的广山应助木头人采纳,获得200
8秒前
嘻哈学习完成签到,获得积分10
8秒前
8秒前
8秒前
ying完成签到,获得积分10
9秒前
9秒前
虚幻白玉完成签到,获得积分10
10秒前
安静的孤萍完成签到,获得积分10
11秒前
11秒前
lyz666发布了新的文献求助10
11秒前
liuxl发布了新的文献求助10
12秒前
smile完成签到,获得积分20
13秒前
Shuo Yang完成签到,获得积分10
13秒前
13秒前
伊酒发布了新的文献求助10
13秒前
蓉儿完成签到 ,获得积分10
14秒前
动人的梦之完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
小小爱吃百香果完成签到,获得积分20
17秒前
薪炭林应助空心采纳,获得30
17秒前
宫宛儿完成签到,获得积分10
17秒前
smile发布了新的文献求助10
18秒前
永远少年发布了新的文献求助10
19秒前
跳跃完成签到,获得积分20
19秒前
19秒前
20秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808