Differences in running technique between runners with better and poorer running economy and lower and higher milage: An artificial neural network approach

运行经济 矢状面 运动学 脚踝 摇摆 物理医学与康复 膝关节屈曲 人工神经网络 数学 冠状面 后备箱 步态周期 计算机科学 物理疗法 医学 人工智能 工程类 物理 解剖 生物 放射科 最大VO2 心率 生态学 血压 机械工程 经典力学
作者
Bas Van Hooren,Rebecca Lennartz,Maartje Cox,Fabian Hoitz,Guy Plasqui,Kenneth Meijer
出处
期刊:Scandinavian Journal of Medicine & Science in Sports [Wiley]
卷期号:34 (3)
标识
DOI:10.1111/sms.14605
摘要

Abstract Background Prior studies investigated selected discrete sagittal‐plane outcomes (e.g., peak knee flexion) in relation to running economy, hereby discarding the potential relevance of running technique parameters during noninvestigated phases of the gait cycle and in other movement planes. Purpose Investigate which components of running technique distinguish groups of runners with better and poorer economy and higher and lower weekly running distance using an artificial neural network (ANN) approach with layer‐wise relevance propagation. Methods Forty‐one participants (22 males and 19 females) ran at 2.78 m∙s −1 while three‐dimensional kinematics and gas exchange data were collected. Two groups were created that differed in running economy or weekly training distance. The three‐dimensional kinematic data were used as input to an ANN to predict group allocations. Layer‐wise relevance propagation was used to determine the relevance of three‐dimensional kinematics for group classification. Results The ANN classified runners in the correct economy or distance group with accuracies of up to 62% and 71%, respectively. Knee, hip, and ankle flexion were most relevant to both classifications. Runners with poorer running economy showed higher knee flexion during swing, more hip flexion during early stance, and more ankle extension after toe‐off. Runners with higher running distance showed less trunk rotation during swing. Conclusion The ANN accuracy was moderate when predicting whether runners had better, or poorer running economy, or had a higher or lower weekly training distance based on their running technique. The kinematic components that contributed the most to the classification may nevertheless inform future research and training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jarl完成签到,获得积分10
1秒前
香兰笑发布了新的文献求助10
1秒前
1秒前
朱洛尘完成签到,获得积分10
3秒前
吴昊东完成签到,获得积分10
3秒前
丘比特应助昵称231采纳,获得10
3秒前
魁梧的莹芝完成签到,获得积分10
3秒前
噼里啪啦发布了新的文献求助10
4秒前
车间我发布了新的文献求助10
4秒前
华仔应助简单的烤鸡采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Criminology34应助长村采纳,获得10
6秒前
wanci应助芦木成鱼采纳,获得10
6秒前
vain完成签到,获得积分10
6秒前
7秒前
豹子头零充完成签到,获得积分10
7秒前
开朗眼神发布了新的文献求助10
7秒前
浮游应助研友_LMBAXn采纳,获得10
7秒前
zzz完成签到,获得积分20
8秒前
善学以致用应助赵梦娜采纳,获得10
8秒前
郁盈完成签到,获得积分10
8秒前
如意要科研关注了科研通微信公众号
9秒前
11完成签到 ,获得积分10
11秒前
开朗雪糕发布了新的文献求助10
12秒前
开朗眼神完成签到,获得积分10
12秒前
善学以致用应助噼里啪啦采纳,获得10
12秒前
科研通AI6应助ccc采纳,获得10
13秒前
13秒前
科研通AI5应助nanxing采纳,获得10
13秒前
Flipped发布了新的文献求助150
15秒前
打打应助月儿采纳,获得10
15秒前
lins发布了新的文献求助20
15秒前
16秒前
冷艳的寒天完成签到,获得积分10
16秒前
舒适行云发布了新的文献求助10
16秒前
Doc.Wang完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028605
求助须知:如何正确求助?哪些是违规求助? 4264449
关于积分的说明 13293731
捐赠科研通 4072538
什么是DOI,文献DOI怎么找? 2227489
邀请新用户注册赠送积分活动 1235971
关于科研通互助平台的介绍 1160275