STCS-Net: a medical image segmentation network that fully utilizes multi-scale information

计算机科学 分割 编码器 可扩展性 杠杆(统计) 人工智能 图像分割 领域(数学) 钥匙(锁) 深度学习 图像处理 数据挖掘 图像(数学) 数据库 操作系统 计算机安全 数学 纯数学
作者
Pengchong Ma,Guanglei Wang,Tong Li,Haiyang Zhao,Yan Li,Hongrui Wang
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:15 (5): 2811-2811 被引量:2
标识
DOI:10.1364/boe.517737
摘要

In recent years, significant progress has been made in the field of medical image segmentation through the application of deep learning and neural networks. Numerous studies have focused on optimizing encoders to extract more comprehensive key information. However, the importance of decoders in directly influencing the final output of images cannot be overstated. The ability of decoders to effectively leverage diverse information and further refine crucial details is of paramount importance. This paper proposes a medical image segmentation architecture named STCS-Net. The designed decoder in STCS-Net facilitates multi-scale filtering and correction of information from the encoder, thereby enhancing the accuracy of extracting vital features. Additionally, an information enhancement module is introduced in skip connections to highlight essential features and improve the inter-layer information interaction capabilities. Comprehensive evaluations on the ISIC2016, ISIC2018, and Lung datasets validate the superiority of STCS-Net across different scenarios. Experimental results demonstrate the outstanding performance of STCS-Net on all three datasets. Comparative experiments highlight the advantages of our proposed network in terms of accuracy and parameter efficiency. Ablation studies confirm the effectiveness of the introduced decoder and skip connection module. This research introduces a novel approach to the field of medical image segmentation, providing new perspectives and solutions for future developments in medical image processing and analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助cindy采纳,获得10
刚刚
归尘发布了新的文献求助10
刚刚
领导范儿应助aki空中飞跃采纳,获得10
刚刚
上官若男应助Tindra采纳,获得10
刚刚
木南发布了新的文献求助10
刚刚
爆米花应助yuyuyu采纳,获得10
1秒前
1秒前
1秒前
ctyyyu发布了新的文献求助10
2秒前
2秒前
狐尾完成签到,获得积分10
2秒前
脑洞疼应助怕黑千易采纳,获得10
2秒前
AYing发布了新的文献求助10
2秒前
科研通AI6应助青青儿采纳,获得10
2秒前
CodeCraft应助我是聪聪呦采纳,获得10
2秒前
得己完成签到,获得积分10
2秒前
情怀应助PhDL1采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
GJJ完成签到 ,获得积分10
3秒前
cx完成签到,获得积分10
3秒前
3秒前
3秒前
Janice发布了新的文献求助10
3秒前
rb完成签到,获得积分10
4秒前
4秒前
上官发布了新的文献求助10
4秒前
王多鱼完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
wanci应助twr采纳,获得10
5秒前
何易形发布了新的文献求助10
5秒前
cxt发布了新的文献求助10
5秒前
lore完成签到,获得积分10
5秒前
6秒前
lhmxcy发布了新的文献求助10
6秒前
cx发布了新的文献求助10
6秒前
liujianwen关注了科研通微信公众号
6秒前
6秒前
奋斗以松发布了新的文献求助10
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587509
求助须知:如何正确求助?哪些是违规求助? 4670670
关于积分的说明 14783758
捐赠科研通 4623041
什么是DOI,文献DOI怎么找? 2531297
邀请新用户注册赠送积分活动 1499973
关于科研通互助平台的介绍 1468080