STCS-Net: a medical image segmentation network that fully utilizes multi-scale information

计算机科学 分割 编码器 可扩展性 杠杆(统计) 人工智能 图像分割 领域(数学) 钥匙(锁) 深度学习 图像处理 数据挖掘 图像(数学) 数据库 操作系统 计算机安全 数学 纯数学
作者
Pengchong Ma,Guanglei Wang,Tong Li,Haiyang Zhao,Yan Li,Hongrui Wang
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:15 (5): 2811-2811 被引量:2
标识
DOI:10.1364/boe.517737
摘要

In recent years, significant progress has been made in the field of medical image segmentation through the application of deep learning and neural networks. Numerous studies have focused on optimizing encoders to extract more comprehensive key information. However, the importance of decoders in directly influencing the final output of images cannot be overstated. The ability of decoders to effectively leverage diverse information and further refine crucial details is of paramount importance. This paper proposes a medical image segmentation architecture named STCS-Net. The designed decoder in STCS-Net facilitates multi-scale filtering and correction of information from the encoder, thereby enhancing the accuracy of extracting vital features. Additionally, an information enhancement module is introduced in skip connections to highlight essential features and improve the inter-layer information interaction capabilities. Comprehensive evaluations on the ISIC2016, ISIC2018, and Lung datasets validate the superiority of STCS-Net across different scenarios. Experimental results demonstrate the outstanding performance of STCS-Net on all three datasets. Comparative experiments highlight the advantages of our proposed network in terms of accuracy and parameter efficiency. Ablation studies confirm the effectiveness of the introduced decoder and skip connection module. This research introduces a novel approach to the field of medical image segmentation, providing new perspectives and solutions for future developments in medical image processing and analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acuis发布了新的文献求助10
刚刚
王镇发布了新的文献求助10
刚刚
HOAN应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
JayceHe应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
holly完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Virgil完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
虚幻导师发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
爱笑如蓉完成签到,获得积分10
2秒前
kiminonawa应助科研通管家采纳,获得10
2秒前
2秒前
HOAN应助科研通管家采纳,获得10
2秒前
2秒前
小柠完成签到,获得积分10
2秒前
shero快毕业完成签到 ,获得积分10
2秒前
解语花031发布了新的文献求助10
3秒前
5秒前
乐观大白菜真实的钥匙完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369