Time difference auto‐extraction methods for in situ sound speed measurements in seafloor sediments

海底扩张 萃取(化学) 地质学 原位 声速 声音(地理) 声学 海洋学 化学 色谱法 气象学 物理
作者
Qingfeng Hua,Jingqiang Wang,Guanbao Li,Linqing Zhang,Lei Sun,Wuwen Dong
出处
期刊:Geophysical Prospecting [Wiley]
卷期号:72 (6): 2261-2273
标识
DOI:10.1111/1365-2478.13514
摘要

Abstract The in situ acoustic measurement of seafloor sediment is an important technical means to obtain the acoustic parameters of seafloor. The time‐of‐flight method is commonly used to calculate the sound speed in seafloor sediment. Accurate identification of signal feature points is essential for determining travel time or travel time difference of acoustic signals. However, the precise identification of feature points, such as the take‐off point of the first wave of a sound wave signal, is challenging. The conventional manual identification method is inefficient and prone to errors. The development of a feature point auto‐identification method is imperative for accurately calculating the travel time of acoustic signals. In this study, we employed the cross‐correlation method, the level threshold method and the short window‐long window energy ratio method to extract the acoustic travel time differences and calculate the sound speeds in seawater and in seafloor sediment. We then analysed the effectiveness of these calculated results. The sound speeds in seawater obtained through the aforementioned methods were compared with the sound speeds measured using a sound velocity profiler. The comparison revealed that these processing methods exhibit a high level of accuracy. The sound speed results in sediments show that the programme‐based auto‐identification methods significantly reduce the standard deviation compared to the manual identification method. This study successfully assessed the processing accuracy of different methods and expanded the processing methods for in situ acoustic signals of seafloor sediments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zezezee发布了新的文献求助10
2秒前
复杂的问玉完成签到,获得积分20
3秒前
4秒前
4秒前
睡睡完成签到,获得积分10
4秒前
5秒前
6秒前
所所应助饕餮采纳,获得10
6秒前
平淡小凝发布了新的文献求助10
6秒前
nihaoxiaoai完成签到,获得积分10
7秒前
完美世界应助英俊的汉堡采纳,获得10
7秒前
爱静静应助hehe采纳,获得10
8秒前
九城发布了新的文献求助20
8秒前
斯文败类应助高君奇采纳,获得10
8秒前
小二郎应助特兰克斯采纳,获得10
8秒前
mojomars发布了新的文献求助10
8秒前
吃嘛嘛香完成签到,获得积分10
8秒前
wqy发布了新的文献求助10
9秒前
天天快乐应助新的心跳采纳,获得10
9秒前
Orange应助有益采纳,获得10
9秒前
11秒前
爆米花应助marinemiao采纳,获得10
11秒前
11秒前
招财不肥发布了新的文献求助10
12秒前
网安真难T_T完成签到,获得积分10
12秒前
大土豆子完成签到,获得积分10
13秒前
13秒前
甜甜醉波发布了新的文献求助10
14秒前
CodeCraft应助jy采纳,获得10
14秒前
领导范儿应助睡睡采纳,获得10
14秒前
哈哈完成签到 ,获得积分10
15秒前
Holleay123发布了新的文献求助10
16秒前
16秒前
17秒前
苏卿应助kento采纳,获得100
17秒前
小马甲应助满意之玉采纳,获得10
17秒前
18秒前
Jing完成签到,获得积分10
19秒前
饕餮发布了新的文献求助10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808