Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons

环境修复 环境科学 热脱附 土壤污染 土壤水分 解吸 污染 环境化学 随机森林 土壤科学 化学 计算机科学 机器学习 吸附 生态学 有机化学 生物
作者
Haojia Chen,Yudong Cao,Wei Qin,Kunsen Lin,Yan Yang,Changqing Liu,Hongbing Ji
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:927: 172173-172173 被引量:4
标识
DOI:10.1016/j.scitotenv.2024.172173
摘要

Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baipengkai发布了新的文献求助30
2秒前
3秒前
科研达人发布了新的文献求助10
3秒前
bsyaa发布了新的文献求助10
4秒前
4秒前
7秒前
7秒前
12发布了新的文献求助10
7秒前
wu完成签到,获得积分20
7秒前
小二郎应助善良的冥茗采纳,获得10
9秒前
喂喂完成签到 ,获得积分10
10秒前
10秒前
友好白凡发布了新的文献求助10
10秒前
羔羊发布了新的文献求助10
11秒前
zdd完成签到,获得积分10
11秒前
13秒前
科研白菜发布了新的文献求助10
15秒前
友好白凡完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
科研达人发布了新的文献求助10
19秒前
深情安青应助天海采纳,获得10
19秒前
Rondab应助jingwenli21采纳,获得10
20秒前
友好驳发布了新的文献求助10
20秒前
从容傲柏发布了新的文献求助10
21秒前
21秒前
23秒前
25秒前
开朗囧发布了新的文献求助20
26秒前
26秒前
28秒前
30秒前
Zjx发布了新的文献求助10
30秒前
李李李发布了新的文献求助10
32秒前
科研达人发布了新的文献求助10
32秒前
欠虐宝宝完成签到 ,获得积分10
32秒前
莫言发布了新的文献求助10
35秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629