Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons

环境修复 环境科学 热脱附 土壤污染 土壤水分 解吸 污染 环境化学 随机森林 土壤科学 化学 计算机科学 机器学习 吸附 生态学 有机化学 生物
作者
Haojia Chen,Yudong Cao,Wei Qin,Kunsen Lin,Yan Yang,Changqing Liu,Hongbing Ji
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:927: 172173-172173 被引量:4
标识
DOI:10.1016/j.scitotenv.2024.172173
摘要

Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaosan完成签到,获得积分10
刚刚
刚刚
土豆国王发布了新的文献求助10
刚刚
ding应助wulixin采纳,获得10
1秒前
科研通AI6应助沐沐采纳,获得10
1秒前
2秒前
浮游应助幽默谷雪采纳,获得10
2秒前
crazyfish完成签到,获得积分10
3秒前
高高的从波完成签到,获得积分10
3秒前
利奈唑胺发布了新的文献求助10
3秒前
yannn完成签到,获得积分10
4秒前
可爱的函函应助婷婷采纳,获得10
4秒前
烂漫的思柔完成签到,获得积分10
4秒前
小美完成签到,获得积分10
5秒前
bkagyin应助刘禹彤采纳,获得10
5秒前
平淡一兰完成签到 ,获得积分10
5秒前
新手菜鸟发布了新的文献求助10
6秒前
7秒前
清秀青荷完成签到,获得积分10
7秒前
xf应助qq大魔王采纳,获得10
7秒前
白介发布了新的文献求助10
7秒前
陈阳完成签到,获得积分10
9秒前
9秒前
10秒前
Nolan发布了新的文献求助10
10秒前
11秒前
bobo呀完成签到,获得积分10
12秒前
12秒前
摸鱼的张发布了新的文献求助10
12秒前
13秒前
wsx4321发布了新的文献求助10
14秒前
abc完成签到 ,获得积分10
14秒前
14秒前
cai完成签到,获得积分10
14秒前
14秒前
安和2396发布了新的文献求助10
15秒前
可爱的函函应助Mrsy采纳,获得10
15秒前
16秒前
二三发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708