Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons

环境修复 环境科学 热脱附 土壤污染 土壤水分 解吸 污染 环境化学 随机森林 土壤科学 化学 计算机科学 机器学习 吸附 生态学 有机化学 生物
作者
Haojia Chen,Yudong Cao,Wei Qin,Kunsen Lin,Yan Yang,Changqing Liu,Hongbing Ji
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:927: 172173-172173 被引量:4
标识
DOI:10.1016/j.scitotenv.2024.172173
摘要

Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助哈哈哈采纳,获得10
2秒前
3秒前
3秒前
her发布了新的文献求助30
4秒前
xxxxx发布了新的文献求助10
4秒前
呗呗兔发布了新的文献求助10
6秒前
小二郎应助平淡的万言采纳,获得10
6秒前
6秒前
6秒前
lslslslsllss发布了新的文献求助20
8秒前
8秒前
Na发布了新的文献求助30
8秒前
10秒前
cxy发布了新的文献求助10
10秒前
木子发布了新的文献求助10
10秒前
善学以致用应助辛巴采纳,获得10
13秒前
ww发布了新的文献求助10
13秒前
Criminology34应助sks采纳,获得10
15秒前
三金完成签到 ,获得积分10
15秒前
hou发布了新的文献求助10
17秒前
Owen应助cxy采纳,获得10
17秒前
啊哈哈哈哈完成签到,获得积分10
18秒前
18秒前
无聊的土豆完成签到,获得积分10
18秒前
19秒前
19秒前
外向青筠完成签到 ,获得积分10
20秒前
SilentRP完成签到,获得积分10
21秒前
22秒前
我歌发布了新的文献求助10
24秒前
victor完成签到,获得积分10
24秒前
26秒前
JamesPei应助ww采纳,获得10
26秒前
29秒前
辛巴发布了新的文献求助10
29秒前
30秒前
dsa2815完成签到,获得积分10
31秒前
Lucas应助xxxxx采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992