亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons

环境修复 环境科学 热脱附 土壤污染 土壤水分 解吸 污染 环境化学 随机森林 土壤科学 化学 计算机科学 机器学习 吸附 生物 有机化学 生态学
作者
Haojia Chen,Yudong Cao,Wei Qin,Kunsen Lin,Yan Yang,Changqing Liu,Hongbing Ji
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:927: 172173-172173 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.172173
摘要

Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得30
5秒前
5秒前
Leo完成签到 ,获得积分10
14秒前
明理囧完成签到 ,获得积分10
34秒前
sirius应助Ni采纳,获得10
37秒前
桐桐应助hyhyhyhy采纳,获得10
42秒前
小小猪完成签到,获得积分10
49秒前
KK完成签到,获得积分10
51秒前
51秒前
52秒前
hyhyhyhy发布了新的文献求助10
56秒前
小枣完成签到 ,获得积分10
1分钟前
dilli完成签到 ,获得积分10
1分钟前
1分钟前
医路通行发布了新的文献求助20
1分钟前
1分钟前
1分钟前
隐形问萍发布了新的文献求助10
1分钟前
Zhang完成签到,获得积分20
1分钟前
灵活又幸福的胖完成签到,获得积分10
2分钟前
葡紫明完成签到 ,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
与共完成签到 ,获得积分10
2分钟前
子月之路完成签到,获得积分10
2分钟前
wyy完成签到 ,获得积分10
2分钟前
henryhc_完成签到,获得积分10
2分钟前
antarctic_2022完成签到,获得积分10
2分钟前
Zhang关注了科研通微信公众号
3分钟前
夏天完成签到,获得积分10
3分钟前
3分钟前
GGGrigor完成签到,获得积分10
3分钟前
填充物完成签到 ,获得积分10
3分钟前
3分钟前
Zhang发布了新的文献求助10
3分钟前
楠笙发布了新的文献求助10
3分钟前
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784078
捐赠科研通 2444023
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989