工作流程
计算机科学
机制(生物学)
电化学
自动化
生化工程
电子转移
电泳剂
组合化学
纳米技术
生物系统
化学
材料科学
催化作用
电极
物理
数据库
机械工程
生物化学
有机化学
物理化学
量子力学
工程类
生物
作者
Hongyuan Sheng,Jingwen Sun,Oliver Rodríguez,Benjamin B. Hoar,Weitong Zhang,Danlei Xiang,Tianhua Tang,Avijit Hazra,Daniel S. Min,Abigail G. Doyle,Matthew S. Sigman,Cyrille Costentin,Quanquan Gu,Joaquín Rodríguez‐López,Chong Liu
标识
DOI:10.1038/s41467-024-47210-x
摘要
Abstract Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates an EC mechanism, an interfacial electron transfer ( E step) followed by a solution reaction ( C step), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns the EC mechanism’s presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of the C step spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI