Machine learning heralding a new development phase in molecular dynamics simulations

计算机科学 分子动力学 相(物质) 动力学(音乐) 开发(拓扑) 人工智能 物理 化学 计算化学 数学分析 数学 量子力学 声学
作者
Eva Prašnikar,Martin Ljubič,Andrej Perdih,Jure Borišek
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (4) 被引量:10
标识
DOI:10.1007/s10462-024-10731-4
摘要

Abstract Molecular dynamics (MD) simulations are a key computational chemistry technique that provide dynamic insight into the underlying atomic-level processes in the system under study. These insights not only improve our understanding of the molecular world, but also aid in the design of experiments and targeted interventions. Currently, MD is associated with several limitations, the most important of which are: insufficient sampling, inadequate accuracy of the atomistic models, and challenges with proper analysis and interpretation of the obtained trajectories. Although numerous efforts have been made to address these limitations, more effective solutions are still needed. The recent development of artificial intelligence, particularly machine learning (ML), offers exciting opportunities to address the challenges of MD. In this review we aim to familiarize readers with the basics of MD while highlighting its limitations. The main focus is on exploring the integration of deep learning with MD simulations. The advancements made by ML are systematically outlined, including the development of ML-based force fields, techniques for improved conformational space sampling, and innovative methods for trajectory analysis. Additionally, the challenges and implications associated with the integration of ML and artificial intelligence are discussed. While the potential of ML-MD fusion is clearly established, further applications are needed to confirm its superiority over traditional methods. This comprehensive overview of the new perspectives of MD, which ML has opened up, serves as a gentle introduction to the exciting phase of MD development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
农学小王完成签到 ,获得积分10
1秒前
实验菜菜君完成签到 ,获得积分10
1秒前
DC应助37星河75采纳,获得10
1秒前
彭于彦祖应助37星河75采纳,获得20
1秒前
A,w携念e行ོ完成签到,获得积分10
3秒前
hyan完成签到 ,获得积分10
5秒前
狗子爱吃桃桃完成签到 ,获得积分10
5秒前
晁子枫完成签到 ,获得积分10
6秒前
桃桃甜筒完成签到,获得积分10
10秒前
37星河75完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
Feng5945完成签到 ,获得积分10
14秒前
刘超D完成签到,获得积分10
16秒前
芝麻完成签到,获得积分10
16秒前
孤独雨梅完成签到,获得积分10
17秒前
寒战完成签到 ,获得积分10
17秒前
小巧的柏柳完成签到 ,获得积分10
19秒前
壳子刘完成签到 ,获得积分10
20秒前
缥缈的闭月完成签到,获得积分10
20秒前
ptjam完成签到,获得积分10
20秒前
11完成签到 ,获得积分10
21秒前
不钓鱼完成签到,获得积分10
22秒前
zz完成签到,获得积分10
22秒前
乐一李完成签到,获得积分10
25秒前
wan完成签到 ,获得积分10
25秒前
彪壮的含双完成签到,获得积分10
26秒前
26秒前
爱吃罗勒意面的葡萄完成签到,获得积分10
27秒前
27秒前
27秒前
chrysan完成签到,获得积分10
29秒前
苹果书兰完成签到 ,获得积分10
29秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288540
求助须知:如何正确求助?哪些是违规求助? 2925912
关于积分的说明 8423862
捐赠科研通 2596934
什么是DOI,文献DOI怎么找? 1416812
科研通“疑难数据库(出版商)”最低求助积分说明 659524
邀请新用户注册赠送积分活动 641889