已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DBFFT: Adversarial-robust dual-branch frequency domain feature fusion in vision transformers

计算机科学 对抗制 频域 变压器 人工智能 融合 特征(语言学) 对偶(语法数字) 计算机视觉 模式识别(心理学) 电气工程 工程类 电压 哲学 艺术 文学类 语言学
作者
Jia Zeng,Lan Huang,Xingyu Bai,Kangping Wang
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102387-102387 被引量:1
标识
DOI:10.1016/j.inffus.2024.102387
摘要

Vision transformers (ViTs) have been successful in image recognition. However, it is difficult for ViTs to capture comprehensive information and resist adversarial perturbations by learning features from the spatial domain alone. Features with frequency domain information also play an important role in image classification and robustness improvement. In particular, the relative importance of spatial and frequency domain feature representations should vary depending on the encoding stage. Previous studies lack consideration of the flexible fusion of feature representations from different domains. To address this limitation, we propose a novel dual-branch adaptive frequency domain feature fusion architecture for Transformers with good classification ability and strong adversarial robustness, namely DBFFT. In each layer, we design two parallel Fourier transform and self-attention branches to learn hidden representations from the frequency domain and spatial domain, respectively. These are then adaptively weighted and fused according to their learned importance. Moreover, we further propose a dual-branch patch embedding fusion module. The module introduces different convolutional paths to extract input image features at different scales. The features are then embedded and combined into more informative tokens. Our DBFFT architecture can make full use of diverse domain and scale information, which benefits the image classification and enhances robustness against adversarial interference. Experimental results show that our DBFFT achieves promising performance and robustness in many image classification datasets and robustness benchmarks with favorable accuracy-complexity trade-offs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangxin发布了新的文献求助30
1秒前
1秒前
Cutewm发布了新的文献求助10
1秒前
2秒前
3秒前
Lucas应助曦晨采纳,获得10
3秒前
April完成签到 ,获得积分10
5秒前
5秒前
5秒前
哦豁完成签到,获得积分10
6秒前
慕青应助早岁采纳,获得10
6秒前
应万言完成签到,获得积分10
7秒前
fatevaa发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助swordlee采纳,获得10
8秒前
所所应助潍澤采纳,获得10
9秒前
情怀应助孤独靖柏采纳,获得10
9秒前
Cutewm完成签到,获得积分10
10秒前
丘比特应助感性的之卉采纳,获得10
11秒前
CodeCraft应助qqa采纳,获得10
12秒前
12秒前
13秒前
13秒前
曦晨完成签到,获得积分20
13秒前
YRHM完成签到 ,获得积分10
14秒前
董小妍完成签到,获得积分10
15秒前
Orange应助欣喜的友易采纳,获得10
15秒前
16秒前
曦晨发布了新的文献求助10
16秒前
18秒前
18秒前
科研通AI5应助韩惜灵采纳,获得10
19秒前
19秒前
高兴的小甜瓜完成签到 ,获得积分20
20秒前
孤独靖柏发布了新的文献求助10
21秒前
22秒前
22秒前
24秒前
高兴的小甜瓜关注了科研通微信公众号
27秒前
不胜玖完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555447
求助须知:如何正确求助?哪些是违规求助? 3131097
关于积分的说明 9390003
捐赠科研通 2830593
什么是DOI,文献DOI怎么找? 1556091
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715756