Electrochemical Activation of Venus Flytrap-like CoP and Co3O4 for Boosting the Supercapacitance Performance

Boosting(机器学习) 电化学 维纳斯 材料科学 化学 纳米技术 计算机科学 物理 天体生物学 人工智能 电极 物理化学
作者
Changyi Deng,Jiahua He,Guangjin Wang,Wei Dong,Xiaodong Hong
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:: 174324-174324 被引量:1
标识
DOI:10.1016/j.jallcom.2024.174324
摘要

Electrochemical activation tactic can be adopted to boost electrochemical performance of electrodes by adjusting the composition and microstructure. Herein, venus flytrap-like CoP nanostructures and corresponding Co3O4 precursor are synthesized on nickel foam (NF) framework, and the electrochemical activation mechanisms of CoP and Co3O4 are investigated in KOH electrolyte. When endured for 100 CV cycles, the activated CoP exhibits a 3D framework structure consisted of thin nanosheets, and the discharge capacity enhances to 1536 C g−1 at 1 A g−1 from initial capacity of 663 C g−1. The enhanced performance is due to the composition transition from upper CoP and beneath NiP to NiCo-hydroxides and NiCoOOH, and the microstructure transition from nanoneedles to 3D framework structure stacked by thin nanosheets. Different from the transition mechanism of NF/CoP, seldom microstructure transitions are occurred for the Co3O4 precursor, only involving the change of nanoneedle diameter. The activation of Co3O4 induces a limited capacity enhancement from 242 to 623 C g−1, due to a simple transition from oxides to oxyhydroxides. The application performance of NF/CoP is investigated by assembling asymmetric supercapacitor with NF/AC. The device releases a discharge capacitance of 137 F g−1 at 1 A g−1, and the capacitance retention is 77.4% when cycling for 5000 cycles. The energy density is 48.7 W h kg−1 at 804.4 W kg−1. Compared with existing Co-based phosphides, activated NF/CoP electrode exhibits an obvious performance advantage in supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助火星上雨珍采纳,获得10
1秒前
Kevin丶大牛完成签到 ,获得积分10
1秒前
1秒前
Hello应助NEKO采纳,获得10
1秒前
cu发布了新的文献求助10
2秒前
李慕溪关注了科研通微信公众号
3秒前
wzb完成签到,获得积分10
4秒前
6秒前
6秒前
8秒前
9秒前
小杭76应助幸运小狗采纳,获得10
9秒前
薛枏发布了新的文献求助10
9秒前
9秒前
乐乐应助完美的断缘采纳,获得10
9秒前
10秒前
10秒前
慕青应助Bond采纳,获得10
11秒前
Cathy_Durham发布了新的文献求助10
11秒前
13秒前
13秒前
小V发布了新的文献求助10
14秒前
NexusExplorer应助酷炫静枫采纳,获得10
14秒前
14秒前
15秒前
愉快的皮卡丘完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助150
17秒前
changping应助科研通管家采纳,获得10
17秒前
CodeCraft应助syt采纳,获得20
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089190
求助须知:如何正确求助?哪些是违规求助? 4303941
关于积分的说明 13413121
捐赠科研通 4129609
什么是DOI,文献DOI怎么找? 2261628
邀请新用户注册赠送积分活动 1265690
关于科研通互助平台的介绍 1200313