A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis

嵌入 代表(政治) 分类器(UML) 计算机科学 算法 模式识别(心理学) 人工智能 相互信息 数学 数据挖掘 政治学 政治 法学
作者
Yuanhong Liu,Beibei Shi,Shixiang Lü,Zhiwei Gao,Fangfang Zhang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:: 110135-110135
标识
DOI:10.1016/j.ress.2024.110135
摘要

The locally linear embedding algorithm (LLE) mainly extracts significant features by mining the local neighborhood structure of the data. However, when the data exhibit strong nonlinearity in high-dimensional space, the single neighborhood structure of the LLE algorithm may not accurately capture the local linear relationships between instances, which degrades the performances of the LLE. Therefore, we propose a multi-structure neighborhood locally linear embedding algorithm via local mutual representation (LMR-LLE). Firstly, in each neighborhood, multiple local neighborhood structures of one instance are mined via local mutual representation to enhance the interconnectivity between the instances. Furthermore, the multiple neighborhood structures are fused in the low-dimensional space to construct a global reconstruction model, and the ultimate significant features are acquired by determining the model's optimal solution. Finally, the extracted features are fed into a classifier for bearing fault diagnosis. Extensive experiments on two rolling bearing datasets illustrate that the LMR-LLE based diagnosis method has better performance accuracy than conventional LLE-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助诺澜啊采纳,获得10
刚刚
哈哈哈哈发布了新的文献求助10
1秒前
落寞易形完成签到,获得积分10
1秒前
1秒前
科研通AI6应助风中雨竹采纳,获得10
1秒前
慕青应助qiuzhu_采纳,获得10
1秒前
2秒前
曾子曰完成签到,获得积分10
2秒前
大模型应助玄辰采纳,获得10
2秒前
3秒前
1687发布了新的文献求助30
4秒前
桐桐应助漂亮的以冬采纳,获得10
4秒前
5秒前
丘比特应助Skuld采纳,获得10
6秒前
培乐多发布了新的文献求助10
6秒前
独孤阳光完成签到,获得积分10
6秒前
clara完成签到 ,获得积分10
7秒前
looklook完成签到,获得积分10
7秒前
思源应助无私醉蝶采纳,获得10
8秒前
9秒前
呆子发布了新的文献求助10
9秒前
诺澜啊完成签到,获得积分20
10秒前
11秒前
11秒前
顾矜应助梅天豪采纳,获得30
12秒前
12秒前
诺澜啊发布了新的文献求助10
13秒前
虚幻不弱完成签到 ,获得积分10
13秒前
刻苦鸭子完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
dddd发布了新的文献求助10
15秒前
风吹半夏完成签到,获得积分10
17秒前
17秒前
Ava应助wyg1994采纳,获得10
17秒前
Skuld发布了新的文献求助10
18秒前
小海豚发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921