清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The virtual reference radiologist: comprehensive AI assistance for clinical image reading and interpretation

医学诊断 医学 神经组阅片室 放射科 置信区间 鉴别诊断 医学物理学 介入放射学 会话(web分析) 诊断准确性 工作流程 计算机科学 神经学 病理 数据库 内科学 精神科 万维网
作者
Robert Siepmann,Marc Sebastian Huppertz,Annika Rastkhiz,Matthias Reen,Eric Corban,Christian Schmidt,Stephan Wilke,Philipp Schad,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10727-2
摘要

Abstract Objectives Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists’ diagnostic workflow. Materials and methods In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [ n = 10], CT [ n = 10], MRI [ n = 10], and angiographic [ n = 10] studies unassisted (session one) and assisted by GPT-4 (session two). Each imaging study was presented with demographic data, the chief complaint, and associated symptoms, and diagnoses were registered using an online survey tool. The impact of Artificial Intelligence (AI) on diagnostic accuracy, confidence, user experience, input prompts, and generated responses was assessed. False information was registered. Linear mixed-effect models were used to quantify the factors (fixed: experience, modality, AI assistance; random: radiologist) influencing diagnostic accuracy and confidence. Results When assessing if the correct diagnosis was among the top-3 differential diagnoses, diagnostic accuracy improved slightly from 181/240 (75.4%, unassisted) to 188/240 (78.3%, AI-assisted). Similar improvements were found when only the top differential diagnosis was considered. AI assistance was used in 77.5% of the readings. Three hundred nine prompts were generated, primarily involving differential diagnoses (59.1%) and imaging features of specific conditions (27.5%). Diagnostic confidence was significantly higher when readings were AI-assisted ( p > 0.001). Twenty-three responses (7.4%) were classified as hallucinations, while two (0.6%) were misinterpretations. Conclusion Integrating GPT-4 in the diagnostic process improved diagnostic accuracy slightly and diagnostic confidence significantly. Potentially harmful hallucinations and misinterpretations call for caution and highlight the need for further safeguarding measures. Clinical relevance statement Using GPT-4 as a virtual assistant when reading images made six radiologists of different experience levels feel more confident and provide more accurate diagnoses; yet, GPT-4 gave factually incorrect and potentially harmful information in 7.4% of its responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腻腻完成签到,获得积分10
2秒前
十一完成签到,获得积分10
5秒前
31秒前
45秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
wuludie应助科研通管家采纳,获得10
49秒前
wuludie应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
wuludie应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
颜笙发布了新的文献求助10
50秒前
冷静丸子完成签到 ,获得积分10
58秒前
Blank完成签到 ,获得积分10
1分钟前
何为完成签到 ,获得积分10
1分钟前
彼岸花开完成签到 ,获得积分10
1分钟前
星辰大海应助lei采纳,获得10
1分钟前
笨笨听枫完成签到 ,获得积分10
1分钟前
赘婿应助www采纳,获得10
1分钟前
1分钟前
zjh完成签到,获得积分10
1分钟前
独特纸飞机完成签到 ,获得积分10
1分钟前
林克发布了新的文献求助10
1分钟前
LvCR完成签到 ,获得积分10
1分钟前
隐形曼青应助左白易采纳,获得10
1分钟前
1分钟前
颜笙发布了新的文献求助10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
www发布了新的文献求助10
2分钟前
左白易发布了新的文献求助10
2分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
颜笙完成签到,获得积分10
2分钟前
左白易完成签到,获得积分10
2分钟前
2分钟前
Ray完成签到 ,获得积分10
2分钟前
小小鱼完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715273
求助须知:如何正确求助?哪些是违规求助? 5232949
关于积分的说明 15274262
捐赠科研通 4866228
什么是DOI,文献DOI怎么找? 2612811
邀请新用户注册赠送积分活动 1562974
关于科研通互助平台的介绍 1520368