The virtual reference radiologist: comprehensive AI assistance for clinical image reading and interpretation

医学诊断 医学 神经组阅片室 放射科 置信区间 鉴别诊断 医学物理学 介入放射学 会话(web分析) 诊断准确性 工作流程 计算机科学 神经学 病理 数据库 内科学 精神科 万维网
作者
Robert Siepmann,Marc Sebastian Huppertz,Annika Rastkhiz,Matthias Reen,Eric Corban,Christian Schmidt,Stephan Wilke,Philipp Schad,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10727-2
摘要

Abstract Objectives Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists’ diagnostic workflow. Materials and methods In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [ n = 10], CT [ n = 10], MRI [ n = 10], and angiographic [ n = 10] studies unassisted (session one) and assisted by GPT-4 (session two). Each imaging study was presented with demographic data, the chief complaint, and associated symptoms, and diagnoses were registered using an online survey tool. The impact of Artificial Intelligence (AI) on diagnostic accuracy, confidence, user experience, input prompts, and generated responses was assessed. False information was registered. Linear mixed-effect models were used to quantify the factors (fixed: experience, modality, AI assistance; random: radiologist) influencing diagnostic accuracy and confidence. Results When assessing if the correct diagnosis was among the top-3 differential diagnoses, diagnostic accuracy improved slightly from 181/240 (75.4%, unassisted) to 188/240 (78.3%, AI-assisted). Similar improvements were found when only the top differential diagnosis was considered. AI assistance was used in 77.5% of the readings. Three hundred nine prompts were generated, primarily involving differential diagnoses (59.1%) and imaging features of specific conditions (27.5%). Diagnostic confidence was significantly higher when readings were AI-assisted ( p > 0.001). Twenty-three responses (7.4%) were classified as hallucinations, while two (0.6%) were misinterpretations. Conclusion Integrating GPT-4 in the diagnostic process improved diagnostic accuracy slightly and diagnostic confidence significantly. Potentially harmful hallucinations and misinterpretations call for caution and highlight the need for further safeguarding measures. Clinical relevance statement Using GPT-4 as a virtual assistant when reading images made six radiologists of different experience levels feel more confident and provide more accurate diagnoses; yet, GPT-4 gave factually incorrect and potentially harmful information in 7.4% of its responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助lipengjiajun采纳,获得10
6秒前
周周发布了新的文献求助10
7秒前
7秒前
8秒前
Tong完成签到,获得积分10
10秒前
11秒前
twilight完成签到,获得积分10
13秒前
FashionBoy应助周周采纳,获得10
16秒前
YYJ25发布了新的文献求助10
16秒前
17秒前
17秒前
shore完成签到,获得积分10
19秒前
heidi发布了新的文献求助30
20秒前
平淡的秋珊完成签到 ,获得积分10
21秒前
坦率完成签到,获得积分10
21秒前
21秒前
优雅海雪发布了新的文献求助10
22秒前
依瑶完成签到 ,获得积分10
23秒前
诸笑白发布了新的文献求助10
24秒前
26秒前
xg发布了新的文献求助10
26秒前
27秒前
31秒前
NexusExplorer应助优雅海雪采纳,获得10
31秒前
科研通AI5应助heidi采纳,获得10
32秒前
传统的孤丝完成签到 ,获得积分10
33秒前
34秒前
科研通AI5应助susu采纳,获得10
34秒前
35秒前
37秒前
科研通AI2S应助诸笑白采纳,获得10
37秒前
37秒前
37秒前
研友_VZG7GZ应助黄啊涛采纳,获得10
38秒前
迷路的夏之完成签到,获得积分10
39秒前
5114de完成签到,获得积分10
40秒前
大龙哥886发布了新的文献求助30
41秒前
devil发布了新的文献求助10
42秒前
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849