The virtual reference radiologist: comprehensive AI assistance for clinical image reading and interpretation

医学诊断 医学 神经组阅片室 放射科 置信区间 鉴别诊断 医学物理学 介入放射学 会话(web分析) 诊断准确性 工作流程 计算机科学 神经学 病理 数据库 内科学 精神科 万维网
作者
Robert Siepmann,Marc Sebastian Huppertz,Annika Rastkhiz,Matthias Reen,Eric Corban,Christian Schmidt,Stephan Wilke,Philipp Schad,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10727-2
摘要

Abstract Objectives Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists’ diagnostic workflow. Materials and methods In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [ n = 10], CT [ n = 10], MRI [ n = 10], and angiographic [ n = 10] studies unassisted (session one) and assisted by GPT-4 (session two). Each imaging study was presented with demographic data, the chief complaint, and associated symptoms, and diagnoses were registered using an online survey tool. The impact of Artificial Intelligence (AI) on diagnostic accuracy, confidence, user experience, input prompts, and generated responses was assessed. False information was registered. Linear mixed-effect models were used to quantify the factors (fixed: experience, modality, AI assistance; random: radiologist) influencing diagnostic accuracy and confidence. Results When assessing if the correct diagnosis was among the top-3 differential diagnoses, diagnostic accuracy improved slightly from 181/240 (75.4%, unassisted) to 188/240 (78.3%, AI-assisted). Similar improvements were found when only the top differential diagnosis was considered. AI assistance was used in 77.5% of the readings. Three hundred nine prompts were generated, primarily involving differential diagnoses (59.1%) and imaging features of specific conditions (27.5%). Diagnostic confidence was significantly higher when readings were AI-assisted ( p > 0.001). Twenty-three responses (7.4%) were classified as hallucinations, while two (0.6%) were misinterpretations. Conclusion Integrating GPT-4 in the diagnostic process improved diagnostic accuracy slightly and diagnostic confidence significantly. Potentially harmful hallucinations and misinterpretations call for caution and highlight the need for further safeguarding measures. Clinical relevance statement Using GPT-4 as a virtual assistant when reading images made six radiologists of different experience levels feel more confident and provide more accurate diagnoses; yet, GPT-4 gave factually incorrect and potentially harmful information in 7.4% of its responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
chao完成签到,获得积分10
3秒前
4秒前
传奇3应助一一采纳,获得10
5秒前
gxffxf发布了新的文献求助10
5秒前
打打应助杨洋采纳,获得10
6秒前
悲伤香菇酱完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
7秒前
浮游应助着急的凌青采纳,获得10
8秒前
Percy发布了新的文献求助30
8秒前
哈哈哈发布了新的文献求助10
8秒前
叶赛文完成签到,获得积分10
9秒前
SYX完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
13秒前
15秒前
17秒前
lsx发布了新的文献求助10
17秒前
dili发布了新的文献求助20
17秒前
17秒前
Akim应助富贵李采纳,获得10
17秒前
慕青应助bobo采纳,获得10
18秒前
鬼豆完成签到,获得积分10
18秒前
18秒前
老姚发布了新的文献求助10
19秒前
19秒前
我要向阳而生完成签到 ,获得积分10
19秒前
111完成签到,获得积分10
19秒前
20秒前
852应助乐观笑南采纳,获得10
20秒前
21秒前
21秒前
21秒前
浮游应助Percy采纳,获得10
21秒前
sswbzh应助xxsw采纳,获得200
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145