The virtual reference radiologist: comprehensive AI assistance for clinical image reading and interpretation

医学诊断 医学 神经组阅片室 放射科 置信区间 鉴别诊断 医学物理学 介入放射学 会话(web分析) 诊断准确性 工作流程 计算机科学 神经学 病理 数据库 内科学 精神科 万维网
作者
Robert Siepmann,Marc Sebastian Huppertz,Annika Rastkhiz,Matthias Reen,Eric Corban,Christian Schmidt,Stephan Wilke,Philipp Schad,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10727-2
摘要

Abstract Objectives Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists’ diagnostic workflow. Materials and methods In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [ n = 10], CT [ n = 10], MRI [ n = 10], and angiographic [ n = 10] studies unassisted (session one) and assisted by GPT-4 (session two). Each imaging study was presented with demographic data, the chief complaint, and associated symptoms, and diagnoses were registered using an online survey tool. The impact of Artificial Intelligence (AI) on diagnostic accuracy, confidence, user experience, input prompts, and generated responses was assessed. False information was registered. Linear mixed-effect models were used to quantify the factors (fixed: experience, modality, AI assistance; random: radiologist) influencing diagnostic accuracy and confidence. Results When assessing if the correct diagnosis was among the top-3 differential diagnoses, diagnostic accuracy improved slightly from 181/240 (75.4%, unassisted) to 188/240 (78.3%, AI-assisted). Similar improvements were found when only the top differential diagnosis was considered. AI assistance was used in 77.5% of the readings. Three hundred nine prompts were generated, primarily involving differential diagnoses (59.1%) and imaging features of specific conditions (27.5%). Diagnostic confidence was significantly higher when readings were AI-assisted ( p > 0.001). Twenty-three responses (7.4%) were classified as hallucinations, while two (0.6%) were misinterpretations. Conclusion Integrating GPT-4 in the diagnostic process improved diagnostic accuracy slightly and diagnostic confidence significantly. Potentially harmful hallucinations and misinterpretations call for caution and highlight the need for further safeguarding measures. Clinical relevance statement Using GPT-4 as a virtual assistant when reading images made six radiologists of different experience levels feel more confident and provide more accurate diagnoses; yet, GPT-4 gave factually incorrect and potentially harmful information in 7.4% of its responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱听露完成签到 ,获得积分10
3秒前
乐乐应助滑腻腻的小鱼采纳,获得10
4秒前
科研通AI2S应助lin采纳,获得10
4秒前
formulaonef1完成签到,获得积分10
4秒前
大胆的擎苍完成签到,获得积分10
5秒前
chj发布了新的文献求助10
5秒前
5秒前
6秒前
wanwu完成签到,获得积分10
7秒前
扎心应助WCM采纳,获得10
10秒前
I Think发布了新的文献求助10
11秒前
怡然行天完成签到,获得积分10
11秒前
木辰发布了新的文献求助10
12秒前
搜集达人应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
pcr163举报tiomooo求助涉嫌违规
15秒前
很蓝的啦完成签到,获得积分10
15秒前
zho应助斯文听南采纳,获得30
18秒前
WCM完成签到,获得积分10
19秒前
20秒前
路弈发布了新的文献求助10
21秒前
wanjingwan完成签到 ,获得积分10
21秒前
脑三问发布了新的文献求助10
21秒前
21秒前
yufanhui应助很蓝的啦采纳,获得20
21秒前
SciGPT应助淡淡念珍采纳,获得10
22秒前
无奈柚子完成签到,获得积分10
24秒前
wan发布了新的文献求助10
25秒前
大模型应助笨笨的傲芙采纳,获得10
27秒前
I Think完成签到,获得积分10
28秒前
28秒前
山巅一寺一壶酒完成签到,获得积分10
31秒前
TTTaT完成签到,获得积分10
31秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685