The virtual reference radiologist: comprehensive AI assistance for clinical image reading and interpretation

医学诊断 医学 神经组阅片室 放射科 置信区间 鉴别诊断 医学物理学 介入放射学 会话(web分析) 诊断准确性 工作流程 计算机科学 神经学 病理 数据库 内科学 精神科 万维网
作者
Robert Siepmann,Marc Sebastian Huppertz,Annika Rastkhiz,Matthias Reen,Eric Corban,Christian Schmidt,Stephan Wilke,Philipp Schad,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10727-2
摘要

Abstract Objectives Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists’ diagnostic workflow. Materials and methods In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [ n = 10], CT [ n = 10], MRI [ n = 10], and angiographic [ n = 10] studies unassisted (session one) and assisted by GPT-4 (session two). Each imaging study was presented with demographic data, the chief complaint, and associated symptoms, and diagnoses were registered using an online survey tool. The impact of Artificial Intelligence (AI) on diagnostic accuracy, confidence, user experience, input prompts, and generated responses was assessed. False information was registered. Linear mixed-effect models were used to quantify the factors (fixed: experience, modality, AI assistance; random: radiologist) influencing diagnostic accuracy and confidence. Results When assessing if the correct diagnosis was among the top-3 differential diagnoses, diagnostic accuracy improved slightly from 181/240 (75.4%, unassisted) to 188/240 (78.3%, AI-assisted). Similar improvements were found when only the top differential diagnosis was considered. AI assistance was used in 77.5% of the readings. Three hundred nine prompts were generated, primarily involving differential diagnoses (59.1%) and imaging features of specific conditions (27.5%). Diagnostic confidence was significantly higher when readings were AI-assisted ( p > 0.001). Twenty-three responses (7.4%) were classified as hallucinations, while two (0.6%) were misinterpretations. Conclusion Integrating GPT-4 in the diagnostic process improved diagnostic accuracy slightly and diagnostic confidence significantly. Potentially harmful hallucinations and misinterpretations call for caution and highlight the need for further safeguarding measures. Clinical relevance statement Using GPT-4 as a virtual assistant when reading images made six radiologists of different experience levels feel more confident and provide more accurate diagnoses; yet, GPT-4 gave factually incorrect and potentially harmful information in 7.4% of its responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星蘸大酱完成签到,获得积分10
刚刚
爱听歌的蚂蚁完成签到,获得积分10
刚刚
刚刚
刚刚
南海子发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
柯达完成签到,获得积分10
2秒前
牛0254完成签到,获得积分10
2秒前
3333r发布了新的文献求助10
2秒前
2秒前
2秒前
温酒筚篥发布了新的文献求助10
2秒前
陙兂发布了新的文献求助10
2秒前
2秒前
LNE完成签到,获得积分10
2秒前
风秋杨完成签到,获得积分10
3秒前
NexusExplorer应助想喝奶茶采纳,获得10
3秒前
能干觅珍完成签到,获得积分10
3秒前
高贵花瓣发布了新的文献求助10
3秒前
田様应助哈哈采纳,获得10
3秒前
3秒前
熊硕发布了新的文献求助10
3秒前
PTERTIM247完成签到 ,获得积分10
3秒前
4秒前
Dako发布了新的文献求助10
4秒前
迈克老狼发布了新的文献求助10
4秒前
baibai发布了新的文献求助10
4秒前
搜集达人应助滚滚采纳,获得10
4秒前
4秒前
4秒前
研友_VZG7GZ应助刘小雨采纳,获得10
5秒前
5秒前
5秒前
在水一方应助柯达采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721