Optimizing Virtual Nature for Psychological and Physiological Well-Being: A Systematic Review of the Moderating Effects of Duration, Nature Type, Sample Characteristics, and Immersiveness and Potential Risks of Bias

斯科普斯 心理学 心理干预 沉浸式(数学) 应用心理学 虚拟现实 样品(材料) 样本量测定 荟萃分析 系统回顾 计算机科学 梅德林 医学 人机交互 统计 内科学 化学 精神科 色谱法 数学 法学 纯数学 政治学
作者
Ahmad Bolouki,Olivia McAnirlin,Matthew H.E.M. Browning,Allison Maynard
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-17 被引量:1
标识
DOI:10.1080/10447318.2024.2338327
摘要

Virtual nature research has emerged as a prominent and captivating study area, gaining much attention for its profound potential to enhance well-being. This literature review aimed to expand prior reviews of virtual nature experiences on psychological and physiological well-being in two ways: summarizing how four factors may moderate the beneficial effects of virtual nature and reporting the risk of bias in this body of literature. Searches for peer-reviewed research articles were conducted in Web of Science and Scopus and manually identified, returning 78 relevant empirical studies published between 2010 and 2023. The assessment of bias was conducted utilizing Cochrane's RoB 2 and ROBINS-I tools. The four moderators examined were duration of exposure (i.e., ≤5 min, 5–10 min, ≥10 min), type of virtual nature (i.e., green space, blue space), sample characteristics (i.e., age, health status), and immersion level (i.e., virtual reality [VR], 2D screens). We found limited evidence for the impact of the first three moderators but stronger evidence for higher levels of immersion showing stronger benefits. All studies were found to have a moderate to high risk of bias, mostly related to the subjective measurement of outcomes. Future research should prioritize studying tailored virtual nature interventions and their long-term effects among diverse participants and different types of virtual environments, as well as investigating the influence of presence and immersion levels in virtual settings. These efforts will provide further insights into the underlying mechanisms of the benefits derived from virtual nature exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kun Chen发布了新的文献求助10
1秒前
2秒前
陈陈关注了科研通微信公众号
3秒前
5秒前
WWXWWX发布了新的文献求助10
5秒前
KevinLeng发布了新的文献求助10
5秒前
6秒前
ding应助金白采纳,获得10
7秒前
DamonFri发布了新的文献求助10
7秒前
9秒前
爆米花应助阿伟别摆烂了采纳,获得10
9秒前
12秒前
善学以致用应助123采纳,获得10
13秒前
土豪的黑夜完成签到,获得积分10
14秒前
flysky120发布了新的文献求助10
16秒前
123321完成签到,获得积分10
19秒前
20秒前
Akim应助李子果果果采纳,获得10
20秒前
21秒前
金白完成签到,获得积分20
21秒前
hzb完成签到 ,获得积分10
22秒前
金白发布了新的文献求助10
25秒前
领导范儿应助甜的瓜采纳,获得10
25秒前
FashionBoy应助欢喜发卡采纳,获得10
26秒前
科研通AI2S应助jz采纳,获得10
29秒前
领导范儿应助科研小bai采纳,获得20
31秒前
32秒前
1565028013完成签到,获得积分10
33秒前
HKY发布了新的文献求助10
36秒前
123发布了新的文献求助10
37秒前
37秒前
38秒前
39秒前
还原苯醌发布了新的文献求助10
43秒前
hcq发布了新的文献求助10
43秒前
45秒前
无花果应助heihei采纳,获得30
46秒前
大模型应助文献互助1采纳,获得10
46秒前
sci来完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125565
求助须知:如何正确求助?哪些是违规求助? 2775869
关于积分的说明 7728200
捐赠科研通 2431356
什么是DOI,文献DOI怎么找? 1291928
科研通“疑难数据库(出版商)”最低求助积分说明 622278
版权声明 600376