色散(光学)
催化作用
材料科学
Atom(片上系统)
吸附
热稳定性
金属
原子单位
纳米技术
化学工程
表面能
化学物理
化学
物理化学
光学
物理
复合材料
有机化学
冶金
嵌入式系统
工程类
量子力学
计算机科学
作者
Shengpei Zhang,Chao Zhao,Yves Ira A. Reyes,Pei Xiong,Tianxiang Chen,Tianqi Cheng,Xianfeng Yi,Shang‐Wei Chou,Chia‐Ying Chien,Ya‐Yun Yang,Jian Lin Chen,Tsz Woon Benedict Lo,Molly Meng‐Jung Li,Hsin‐Yi Tiffany Chen,Anmin Zheng,Yung‐Kang Peng
标识
DOI:10.1021/acs.chemmater.3c03018
摘要
MgO has long been utilized as a catalyst/support with Lewis base properties in the chemical industry, but its synthesis with exposed (111) surfaces has received relatively little attention compared to those of (110) and (100) surfaces. The unique adsorption energy of this surface for adsorbates also remains elusive. Herein, we present a simple and scalable method for the production of MgO nanosheets exposing the (111) surface (denoted as MgO(111) NSs). This is achieved through the topotactic conversion of Mg(OH)2 NSs at elevated temperatures in an air environment. By adjusting the precursor ratio and the strength of the base, we successfully prepared Mg(OH)2 NSs consisting of approximately 6 atomic layers with lateral sizes ranging from 80 nm to 1 μm in a single step. Subsequent thermal dehydration yields MgO(111) NSs with a preserved dimension. Using Ru as the adsorbate, we found that the remarkable stability and uniformity of its atomic dispersion on the (111) surface can be attributed to the strong structural coordination provided by three oxygen atoms. In contrast, the metal–support interaction on the (110) and (100) surfaces proved to be insufficient to overcome the cohesive energy between Ru atoms, resulting in the formation of Ru clusters. Beyond Ru, this study holds great potential in guiding the rational selection of surfaces to achieve a uniform atomic dispersion of other elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI