Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA

医学 表观遗传学 内科学 置信区间 肿瘤科 2型糖尿病 胎儿游离DNA 糖尿病 生物信息学 DNA甲基化 内分泌学 基因 基因表达 怀孕 产前诊断 化学 胎儿 生物 生物化学 遗传学
作者
David Haan,Anna Bergamaschi,Verena Friedl,Gulfem D. Guler,Yuhong Ning,Roman E. Reggiardo,Michael Kesling,Micah Collins,Bill Gibb,Kyle Hazen,Steven Bates,Michael Antoine,Carolina Fraire,Vanessa Lopez,Roger Malta,Maryam Nabiyouni,Albert Nguyen,Tierney Phillips,Michael A. Riviere,Anna Leighton,Christopher K. Ellison,Erin McCarthy,Aaron Scott,Lauren Gigliotti,Eric Nilson,Judith Sheard,Melissa Peters,Kelly Bethel,Shimul Chowdhury,Wayne Volkmuth,Samuel Levy
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier BV]
卷期号:21 (7): 1802-1809.e6 被引量:10
标识
DOI:10.1016/j.cgh.2023.03.016
摘要

Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma.Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs.5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%).The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gg完成签到,获得积分10
刚刚
彭于晏应助ncwgx采纳,获得10
刚刚
刚刚
刚刚
2秒前
2秒前
十七发布了新的文献求助10
3秒前
4秒前
Jinyi发布了新的文献求助10
4秒前
4秒前
顺利毕业发布了新的文献求助10
5秒前
Binbin发布了新的文献求助10
5秒前
自信的网络完成签到 ,获得积分10
6秒前
天悦鱼发布了新的文献求助10
6秒前
id完成签到,获得积分10
6秒前
7秒前
宅了五百奶奶完成签到,获得积分10
7秒前
7秒前
爆米花应助阔达的语海采纳,获得10
7秒前
开放又亦发布了新的文献求助10
8秒前
田様应助Luminous1123采纳,获得10
8秒前
yjy完成签到,获得积分10
8秒前
潇洒的夜云应助小刘不牛采纳,获得10
8秒前
Nireus发布了新的文献求助10
8秒前
9秒前
9秒前
Rank发布了新的文献求助30
10秒前
玄辰举报百事可乐求助涉嫌违规
10秒前
彭瓜瓜发布了新的文献求助10
10秒前
bkagyin应助更好的我采纳,获得10
10秒前
一地狗粮发布了新的文献求助10
11秒前
暴躁的火车完成签到,获得积分20
11秒前
Orange应助sdl采纳,获得10
11秒前
12秒前
LMX发布了新的文献求助10
12秒前
Tjh发布了新的文献求助10
13秒前
蘑菇屋完成签到 ,获得积分10
13秒前
ww完成签到,获得积分10
13秒前
汉堡包应助机智妙海采纳,获得10
14秒前
科研通AI5应助鱼蛋采纳,获得10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050