Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA

医学 表观遗传学 内科学 置信区间 肿瘤科 2型糖尿病 胎儿游离DNA 糖尿病 生物信息学 DNA甲基化 内分泌学 基因 基因表达 怀孕 产前诊断 化学 胎儿 生物 生物化学 遗传学
作者
David Haan,Anna Bergamaschi,Verena Friedl,Gulfem D. Guler,Yuhong Ning,Roman E. Reggiardo,Michael Kesling,Micah Collins,Bill Gibb,Kyle Hazen,Steven Bates,Michael Antoine,Carolina Fraire,Vanessa Lopez,Roger Malta,Maryam Nabiyouni,Albert Nguyen,Tierney Phillips,Michael A. Riviere,Anna Leighton,Christopher K. Ellison,Erin McCarthy,Aaron Scott,Lauren Gigliotti,Eric Nilson,Judith Sheard,Melissa Peters,Kelly Bethel,Shimul Chowdhury,Wayne Volkmuth,Samuel Levy
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
卷期号:21 (7): 1802-1809.e6 被引量:10
标识
DOI:10.1016/j.cgh.2023.03.016
摘要

Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma.Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs.5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%).The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助terryok采纳,获得10
刚刚
Jasper应助sugkook采纳,获得10
刚刚
刚刚
张豪杰发布了新的文献求助10
1秒前
2秒前
一二发布了新的文献求助10
2秒前
Jager.Z发布了新的文献求助10
3秒前
1nnoy发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
紫焰完成签到 ,获得积分10
5秒前
岁岁发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
lijinbei发布了新的文献求助10
6秒前
6秒前
6秒前
852应助HJJHJH采纳,获得10
6秒前
8秒前
LI电池完成签到,获得积分10
8秒前
晏清发布了新的文献求助10
8秒前
8秒前
8秒前
小仙女发布了新的文献求助10
9秒前
9秒前
宋23完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助lixm采纳,获得10
9秒前
10秒前
10秒前
华仔应助1nnoy采纳,获得10
10秒前
xxx完成签到,获得积分10
10秒前
邱穗发布了新的文献求助10
10秒前
研友完成签到,获得积分0
10秒前
奋斗的醉柳完成签到,获得积分10
11秒前
小娜发布了新的文献求助10
11秒前
浮游应助fenmiao采纳,获得10
13秒前
恐龙扛狼完成签到,获得积分0
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728