Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA

医学 表观遗传学 内科学 置信区间 肿瘤科 2型糖尿病 胎儿游离DNA 糖尿病 生物信息学 DNA甲基化 内分泌学 基因 基因表达 生物化学 化学 生物 怀孕 胎儿 遗传学 产前诊断
作者
David Haan,Anna Bergamaschi,Verena Friedl,Gulfem D. Guler,Yuhong Ning,Roman E. Reggiardo,Michael Kesling,Micah Collins,Bill Gibb,Kyle Hazen,Steven Bates,Michael Antoine,Carolina Fraire,Vanessa Lopez,Roger Malta,Maryam Nabiyouni,Albert Nguyen,Tierney Phillips,Michael A. Riviere,Anna Leighton,Christopher K. Ellison,Erin McCarthy,Aaron Scott,Lauren Gigliotti,Eric Nilson,Judith Sheard,Melissa Peters,Kelly Bethel,Shimul Chowdhury,Wayne Volkmuth,Samuel Levy
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
卷期号:21 (7): 1802-1809.e6 被引量:10
标识
DOI:10.1016/j.cgh.2023.03.016
摘要

Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma.Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs.5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%).The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助直率以松采纳,获得10
1秒前
Eternitymaria完成签到,获得积分10
2秒前
JamesPei应助LXC采纳,获得10
2秒前
张益权发布了新的文献求助10
2秒前
安半青发布了新的文献求助10
2秒前
2秒前
丰富完成签到,获得积分10
2秒前
yan完成签到,获得积分10
3秒前
3秒前
Ava应助烂漫的千萍采纳,获得10
4秒前
生动的熠彤完成签到,获得积分10
4秒前
5秒前
大个应助evisure采纳,获得10
5秒前
Ava应助高源采纳,获得10
6秒前
6秒前
7秒前
小平发布了新的文献求助10
7秒前
pets发布了新的文献求助30
9秒前
10秒前
goofs完成签到,获得积分10
10秒前
星辰大海应助Paul_Geromeng采纳,获得10
11秒前
Ava应助Paul_Geromeng采纳,获得10
11秒前
12秒前
万能图书馆应助跳跃富采纳,获得10
12秒前
12秒前
Orange应助潇洒的白昼采纳,获得10
13秒前
luogan发布了新的文献求助10
13秒前
高源完成签到,获得积分20
13秒前
姜丽发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
安生生发布了新的文献求助10
17秒前
小蘑菇应助哦哟采纳,获得10
18秒前
雪妮儿完成签到,获得积分10
18秒前
19秒前
小白系列产品完成签到,获得积分20
19秒前
魔幻的泽洋完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304868
求助须知:如何正确求助?哪些是违规求助? 2938834
关于积分的说明 8490078
捐赠科研通 2613283
什么是DOI,文献DOI怎么找? 1427315
科研通“疑难数据库(出版商)”最低求助积分说明 662925
邀请新用户注册赠送积分活动 647557