Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA

医学 表观遗传学 内科学 置信区间 肿瘤科 2型糖尿病 胎儿游离DNA 糖尿病 生物信息学 DNA甲基化 内分泌学 基因 基因表达 怀孕 产前诊断 化学 胎儿 生物 生物化学 遗传学
作者
David Haan,Anna Bergamaschi,Verena Friedl,Gulfem D. Guler,Yuhong Ning,Roman E. Reggiardo,Michael Kesling,Micah Collins,Bill Gibb,Kyle Hazen,Steven Bates,Michael Antoine,Carolina Fraire,Vanessa Lopez,Roger Malta,Maryam Nabiyouni,Albert Nguyen,Tierney Phillips,Michael A. Riviere,Anna Leighton,Christopher K. Ellison,Erin McCarthy,Aaron Scott,Lauren Gigliotti,Eric Nilson,Judith Sheard,Melissa Peters,Kelly Bethel,Shimul Chowdhury,Wayne Volkmuth,Samuel Levy
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier BV]
卷期号:21 (7): 1802-1809.e6 被引量:10
标识
DOI:10.1016/j.cgh.2023.03.016
摘要

Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma.Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs.5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%).The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助寒冷黎云采纳,获得10
刚刚
1秒前
健忘远山完成签到 ,获得积分10
1秒前
hanleiharry1发布了新的文献求助10
2秒前
Channing_Ho完成签到 ,获得积分10
2秒前
eric888应助辛勤的诗蕊采纳,获得50
3秒前
3秒前
顺利毕业完成签到,获得积分10
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
Ava应助甜蜜花采纳,获得10
4秒前
上官若男应助Raza采纳,获得10
4秒前
5秒前
Ava应助眼睛大行云采纳,获得10
5秒前
6秒前
xue完成签到 ,获得积分10
6秒前
健忘丹珍完成签到,获得积分10
6秒前
6秒前
6秒前
坤坤蹦蹦跳跳完成签到,获得积分10
8秒前
害羞映容完成签到,获得积分10
8秒前
科研通AI6应助小亮哈哈采纳,获得10
8秒前
8秒前
8秒前
所所应助liriyii采纳,获得10
8秒前
核糖体完成签到,获得积分20
9秒前
10秒前
Lloignyth完成签到,获得积分10
10秒前
赵苏程完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助小张醒了采纳,获得10
11秒前
半凡完成签到,获得积分10
11秒前
小小666完成签到 ,获得积分10
11秒前
幽悠梦儿发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Elin完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978