已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A semiautomated radiomics model based on multimodal dual-layer spectral CT for preoperative discrimination of the invasiveness of pulmonary ground-glass nodules

接收机工作特性 医学 无线电技术 腺癌 试验装置 人工智能 Lasso(编程语言) 放射科 逻辑回归 模式识别(心理学) 计算机科学 癌症 内科学 万维网
作者
Yue Wang,Hebing Chen,Yuyang Chen,Zhenguang Zhong,H. K. Huang,Peng Sun,Xiaohui Zhang,Yiliang Wan,Lingli Li,Tianhe Ye,Feng Pan,Lian Yang
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (5): 2505-2516 被引量:4
标识
DOI:10.21037/jtd-22-1605
摘要

In recent years, spectral computed tomography (CT) has shown excellent performance in the diagnosis of ground-glass nodules (GGNs) invasiveness; however, no research has combined spectral multimodal data and radiomics analysis for comprehensive analysis and exploration. Therefore, this study goes a step further on the basis of the previous research: to investigate the value of dual-layer spectral CT-based multimodal radiomics in accessing the invasiveness of lung adenocarcinoma manifesting as GGNs.In this study, 125 GGNs with pathologically confirmed preinvasive adenocarcinoma (PIA) and lung adenocarcinoma were divided into a training set (n=87) and a test set (n=38). Each lesion was automatically detected and segmented by the pre-trained neural networks, and 63 multimodal radiomic features were extracted. The least absolute shrinkage and selection operator (LASSO) was used to select target features, and a rad-score was constructed in the training set. Logistic regression analysis was conducted to establish a joint model which combined age, gender, and the rad-score. The diagnostic performance of the two models was compared by the receiver operating characteristic (ROC) curve and precision-recall curve. The difference between the two models was compared by the ROC analysis. The test set was used to evaluate the predictive performance and calibrate the model.Five radiomic features were selected. In the training and test sets, the area under the curve (AUC) of the radiomics model was 0.896 (95% CI: 0.830-0.962) and 0.881 (95% CI: 0.777-0.985) respectively, and the AUC of the joint model was 0.932 (95% CI: 0.882-0.982) and 0.887 (95% CI: 0.786-0.988) respectively. There was no significant difference in AUC between the radiomics model and joint model in the training and test sets (0.896 vs. 0.932, P=0.088; 0.881 vs. 0.887, P=0.480).Multimodal radiomics based on dual-layer spectral CT showed good predictive performance in differentiating the invasiveness of GGNs, which could assist in the decision of clinical treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiko发布了新的文献求助10
2秒前
4秒前
Kristine完成签到 ,获得积分10
5秒前
常绝山完成签到 ,获得积分10
6秒前
6秒前
NiuNiu发布了新的文献求助20
7秒前
chen完成签到,获得积分10
8秒前
meow完成签到 ,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
清爽老九应助科研通管家采纳,获得30
11秒前
情怀应助科研通管家采纳,获得10
11秒前
GingerF应助科研通管家采纳,获得50
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
加贝火火完成签到 ,获得积分10
11秒前
11秒前
清爽老九应助科研通管家采纳,获得30
11秒前
11秒前
kiko完成签到,获得积分20
13秒前
张章发布了新的文献求助10
13秒前
牛牛完成签到 ,获得积分10
14秒前
康谨完成签到 ,获得积分10
14秒前
无幻完成签到 ,获得积分10
19秒前
隐形曼青应助xjz采纳,获得10
20秒前
21秒前
22秒前
黑神白了完成签到 ,获得积分10
23秒前
鲜艳的采白应助mark707采纳,获得50
23秒前
团宝妞宝完成签到,获得积分10
25秒前
浮浮世世发布了新的文献求助10
26秒前
隐形曼青应助lf-leo采纳,获得10
27秒前
27秒前
我是老大应助joy采纳,获得10
28秒前
Xiao完成签到 ,获得积分10
29秒前
31秒前
Gzl完成签到 ,获得积分10
31秒前
33秒前
mark707完成签到,获得积分10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058