A semiautomated radiomics model based on multimodal dual-layer spectral CT for preoperative discrimination of the invasiveness of pulmonary ground-glass nodules

接收机工作特性 医学 无线电技术 腺癌 试验装置 人工智能 Lasso(编程语言) 放射科 逻辑回归 模式识别(心理学) 计算机科学 癌症 内科学 万维网
作者
Yue Wang,Hebing Chen,Yuyang Chen,Zhenguang Zhong,H. K. Huang,Peng Sun,Xiaohui Zhang,Yiliang Wan,Lingli Li,Tianhe Ye,Feng Pan,Lian Yang
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (5): 2505-2516 被引量:4
标识
DOI:10.21037/jtd-22-1605
摘要

In recent years, spectral computed tomography (CT) has shown excellent performance in the diagnosis of ground-glass nodules (GGNs) invasiveness; however, no research has combined spectral multimodal data and radiomics analysis for comprehensive analysis and exploration. Therefore, this study goes a step further on the basis of the previous research: to investigate the value of dual-layer spectral CT-based multimodal radiomics in accessing the invasiveness of lung adenocarcinoma manifesting as GGNs.In this study, 125 GGNs with pathologically confirmed preinvasive adenocarcinoma (PIA) and lung adenocarcinoma were divided into a training set (n=87) and a test set (n=38). Each lesion was automatically detected and segmented by the pre-trained neural networks, and 63 multimodal radiomic features were extracted. The least absolute shrinkage and selection operator (LASSO) was used to select target features, and a rad-score was constructed in the training set. Logistic regression analysis was conducted to establish a joint model which combined age, gender, and the rad-score. The diagnostic performance of the two models was compared by the receiver operating characteristic (ROC) curve and precision-recall curve. The difference between the two models was compared by the ROC analysis. The test set was used to evaluate the predictive performance and calibrate the model.Five radiomic features were selected. In the training and test sets, the area under the curve (AUC) of the radiomics model was 0.896 (95% CI: 0.830-0.962) and 0.881 (95% CI: 0.777-0.985) respectively, and the AUC of the joint model was 0.932 (95% CI: 0.882-0.982) and 0.887 (95% CI: 0.786-0.988) respectively. There was no significant difference in AUC between the radiomics model and joint model in the training and test sets (0.896 vs. 0.932, P=0.088; 0.881 vs. 0.887, P=0.480).Multimodal radiomics based on dual-layer spectral CT showed good predictive performance in differentiating the invasiveness of GGNs, which could assist in the decision of clinical treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性铅笔完成签到,获得积分10
1秒前
1秒前
孔骁完成签到,获得积分10
2秒前
sci发布了新的文献求助10
2秒前
2秒前
叮ding发布了新的文献求助30
4秒前
5秒前
卢婉菲完成签到,获得积分10
5秒前
提拉米草完成签到,获得积分10
6秒前
6秒前
兼听则明完成签到,获得积分10
8秒前
Rondab应助摔跤的猫采纳,获得10
8秒前
ZOLEI完成签到,获得积分10
8秒前
9秒前
9秒前
爆米花应助沐晴采纳,获得10
9秒前
gar发布了新的文献求助10
11秒前
叮ding完成签到,获得积分10
11秒前
华仔应助明亮芯采纳,获得10
12秒前
WANG发布了新的文献求助10
12秒前
Lucas应助活泼的巧曼采纳,获得10
13秒前
思维隋发布了新的文献求助10
14秒前
16秒前
wangyuan完成签到,获得积分10
18秒前
小不溜完成签到 ,获得积分10
19秒前
19秒前
活泼的巧曼完成签到,获得积分10
19秒前
19秒前
gar完成签到,获得积分10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
Ricey应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
20秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710