A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems

预言 停工期 管道(软件) 预测性维护 背景(考古学) 计算机科学 资产管理 过程(计算) 可靠性工程 工程类 数据挖掘 操作系统 古生物学 经济 生物 程序设计语言 财务
作者
Marcos Leandro Hoffmann Souza,Cristiano André da Costa,Gabriel de Oliveira Ramos
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:148: 103903-103903 被引量:20
标识
DOI:10.1016/j.compind.2023.103903
摘要

The search for effective asset utilization has been constant, especially in industries with evolving mechanization. In this context, maintenance management gains visibility because it is responsible for ensuring the availability of assets. Predictive maintenance (PDM) is one of the main maintenance management strategies. It allows early detection of failures, avoiding unscheduled downtime and unnecessary costs. As technologies have advanced, PDM has evolved into Prognosis and Health Management (PHM), which provides the means to recognize patterns, understand anomalies, and estimate equipment’s Remaining Useful Life (RUL). In parallel, technologies such as the Internet of Things (IoT), Machine Learning (ML), and cloud computing enable the digitalization of assets, creating smart manufacturing. However, this scenario makes PDM a complex and costly task when applied to systems with interconnected equipment. On the one hand, data is abundantly generated and collected. On the other hand, there is difficulty in converting the data into useful information to support PDM and PHM. In this regard, we propose an analytical pipeline using ML with raw data from equipment and operation. As a result, we suggest the Prognosis and Health Management System (PHMS). Therefore, we used semi-supervised ML with Autoencoder (AE), XGBoost, and the SHAP method. Furthermore, we tested different Deep Learning (DL) architectures for RUL prediction. In order to evaluate the approach, we conducted a case study with real data from the process industry. Consequently, it was possible to identify an anomaly, the behavior of the Features most relevant to failure, and to predict the RUL with significant accuracy. Mitigation actions can be taken through the proposed approach. Thus, avoiding production system downtime and contributing to adopting emerging technologies in real processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助lhcshuang采纳,获得10
2秒前
李雯完成签到,获得积分10
2秒前
巫马沛春完成签到,获得积分10
2秒前
学术老6完成签到,获得积分10
3秒前
任性半凡完成签到,获得积分10
3秒前
wmuzhao发布了新的文献求助10
4秒前
hao完成签到,获得积分10
5秒前
大吴克发布了新的文献求助10
5秒前
犇骉发布了新的文献求助10
5秒前
泡芙完成签到,获得积分10
5秒前
不想太多发布了新的文献求助10
6秒前
tommmmmm15完成签到,获得积分10
6秒前
SSDlk发布了新的文献求助10
6秒前
黄瓜橙橙发布了新的文献求助10
8秒前
gk完成签到,获得积分10
8秒前
凡而不庸完成签到,获得积分10
9秒前
危机的慕卉完成签到 ,获得积分10
10秒前
骑驴追火箭完成签到,获得积分10
10秒前
10秒前
多喝水我完成签到 ,获得积分10
12秒前
13秒前
俏皮的松鼠完成签到 ,获得积分10
13秒前
芋头读文献完成签到,获得积分10
14秒前
李健应助犹豫的若采纳,获得10
14秒前
ENIX完成签到 ,获得积分10
14秒前
曲艺发布了新的文献求助10
15秒前
tangyong完成签到,获得积分10
16秒前
文艺水风完成签到 ,获得积分0
16秒前
18秒前
徐伟康完成签到 ,获得积分10
18秒前
19秒前
宇宙的中心完成签到,获得积分10
20秒前
gaoxiaogao完成签到,获得积分10
20秒前
标致幻然完成签到 ,获得积分10
21秒前
爆米花应助曲艺采纳,获得10
23秒前
猴哥好样的完成签到,获得积分10
24秒前
fdpb完成签到,获得积分10
24秒前
Lyubb完成签到,获得积分10
24秒前
Will完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027