A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems

预言 停工期 管道(软件) 预测性维护 背景(考古学) 计算机科学 资产管理 过程(计算) 可靠性工程 工程类 数据挖掘 操作系统 古生物学 财务 生物 经济 程序设计语言
作者
Marcos Leandro Hoffmann Souza,Cristiano André da Costa,Gabriel de Oliveira Ramos
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103903-103903 被引量:20
标识
DOI:10.1016/j.compind.2023.103903
摘要

The search for effective asset utilization has been constant, especially in industries with evolving mechanization. In this context, maintenance management gains visibility because it is responsible for ensuring the availability of assets. Predictive maintenance (PDM) is one of the main maintenance management strategies. It allows early detection of failures, avoiding unscheduled downtime and unnecessary costs. As technologies have advanced, PDM has evolved into Prognosis and Health Management (PHM), which provides the means to recognize patterns, understand anomalies, and estimate equipment’s Remaining Useful Life (RUL). In parallel, technologies such as the Internet of Things (IoT), Machine Learning (ML), and cloud computing enable the digitalization of assets, creating smart manufacturing. However, this scenario makes PDM a complex and costly task when applied to systems with interconnected equipment. On the one hand, data is abundantly generated and collected. On the other hand, there is difficulty in converting the data into useful information to support PDM and PHM. In this regard, we propose an analytical pipeline using ML with raw data from equipment and operation. As a result, we suggest the Prognosis and Health Management System (PHMS). Therefore, we used semi-supervised ML with Autoencoder (AE), XGBoost, and the SHAP method. Furthermore, we tested different Deep Learning (DL) architectures for RUL prediction. In order to evaluate the approach, we conducted a case study with real data from the process industry. Consequently, it was possible to identify an anomaly, the behavior of the Features most relevant to failure, and to predict the RUL with significant accuracy. Mitigation actions can be taken through the proposed approach. Thus, avoiding production system downtime and contributing to adopting emerging technologies in real processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou发布了新的文献求助10
刚刚
光亮的秋白完成签到 ,获得积分10
刚刚
爆米花应助张远最帅采纳,获得10
刚刚
刚刚
dbb发布了新的文献求助10
1秒前
1秒前
YOLO发布了新的文献求助10
1秒前
2秒前
杨旭完成签到,获得积分10
2秒前
完美世界应助无聊的小洁采纳,获得10
3秒前
3秒前
wifi发布了新的文献求助10
3秒前
FashionBoy应助Daisylee采纳,获得10
4秒前
李卓发布了新的文献求助10
4秒前
罐罐儿应助lliuqiq采纳,获得10
4秒前
着急的洋葱完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Lexi完成签到 ,获得积分10
5秒前
Eason王发布了新的文献求助10
5秒前
张真牛发布了新的文献求助10
6秒前
稳重香芦发布了新的文献求助10
6秒前
友好访蕊发布了新的文献求助10
6秒前
6秒前
清秋1001发布了新的文献求助20
7秒前
万能图书馆应助南风采纳,获得10
7秒前
清脆晓曼完成签到,获得积分10
7秒前
gilderf完成签到,获得积分10
8秒前
大个应助明天会更美好采纳,获得10
8秒前
yangbinsci0827完成签到,获得积分10
8秒前
大圣来也完成签到 ,获得积分10
8秒前
开朗的钥匙完成签到 ,获得积分10
8秒前
8秒前
无花果应助yehuitao采纳,获得10
8秒前
谢大喵完成签到,获得积分10
8秒前
阔达的茉莉应助涛涛采纳,获得10
8秒前
气质复杂完成签到,获得积分10
8秒前
9秒前
英俊的铭应助mengmeng采纳,获得10
9秒前
Ava应助bingzichuan采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444