A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems

预言 停工期 管道(软件) 预测性维护 背景(考古学) 计算机科学 资产管理 过程(计算) 可靠性工程 云计算 工程类 数据挖掘 操作系统 古生物学 财务 生物 经济 程序设计语言
作者
Marcos Leandro Hoffmann Souza,Cristiano André da Costa,Gabriel de Oliveira Ramos
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103903-103903 被引量:6
标识
DOI:10.1016/j.compind.2023.103903
摘要

The search for effective asset utilization has been constant, especially in industries with evolving mechanization. In this context, maintenance management gains visibility because it is responsible for ensuring the availability of assets. Predictive maintenance (PDM) is one of the main maintenance management strategies. It allows early detection of failures, avoiding unscheduled downtime and unnecessary costs. As technologies have advanced, PDM has evolved into Prognosis and Health Management (PHM), which provides the means to recognize patterns, understand anomalies, and estimate equipment’s Remaining Useful Life (RUL). In parallel, technologies such as the Internet of Things (IoT), Machine Learning (ML), and cloud computing enable the digitalization of assets, creating smart manufacturing. However, this scenario makes PDM a complex and costly task when applied to systems with interconnected equipment. On the one hand, data is abundantly generated and collected. On the other hand, there is difficulty in converting the data into useful information to support PDM and PHM. In this regard, we propose an analytical pipeline using ML with raw data from equipment and operation. As a result, we suggest the Prognosis and Health Management System (PHMS). Therefore, we used semi-supervised ML with Autoencoder (AE), XGBoost, and the SHAP method. Furthermore, we tested different Deep Learning (DL) architectures for RUL prediction. In order to evaluate the approach, we conducted a case study with real data from the process industry. Consequently, it was possible to identify an anomaly, the behavior of the Features most relevant to failure, and to predict the RUL with significant accuracy. Mitigation actions can be taken through the proposed approach. Thus, avoiding production system downtime and contributing to adopting emerging technologies in real processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ok关闭了ok文献求助
1秒前
2秒前
4秒前
桃子完成签到,获得积分20
4秒前
4秒前
要减肥的绿蓉完成签到,获得积分10
8秒前
9秒前
Wy21发布了新的文献求助10
10秒前
11秒前
归海含烟完成签到,获得积分10
12秒前
13秒前
14秒前
sunbaek发布了新的文献求助10
16秒前
朴实夏烟发布了新的文献求助10
17秒前
21发布了新的文献求助30
18秒前
HYX发布了新的文献求助10
18秒前
zxy应助JIU夭采纳,获得10
18秒前
18秒前
Wy21完成签到,获得积分10
18秒前
19秒前
诺之完成签到,获得积分10
19秒前
洁净斑马关注了科研通微信公众号
24秒前
超级的沛儿完成签到,获得积分20
24秒前
戚俶完成签到 ,获得积分10
28秒前
酷波er应助yaki采纳,获得10
29秒前
32秒前
ding应助尤狸子采纳,获得10
33秒前
Jasper应助shujing1234采纳,获得10
33秒前
AJ完成签到 ,获得积分10
37秒前
ok发布了新的文献求助200
39秒前
42秒前
独特觅翠应助尔东采纳,获得20
43秒前
7777发布了新的文献求助10
45秒前
LL发布了新的文献求助10
45秒前
爆米花应助hello11采纳,获得10
45秒前
46秒前
onmyway完成签到,获得积分10
48秒前
estate完成签到,获得积分10
48秒前
赘婿应助科研通管家采纳,获得10
48秒前
不配.应助科研通管家采纳,获得10
48秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206752
求助须知:如何正确求助?哪些是违规求助? 2856202
关于积分的说明 8103078
捐赠科研通 2521321
什么是DOI,文献DOI怎么找? 1354373
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613209