A fused CNN‐LSTM model using FFT with application to real‐time power quality disturbances recognition

时域 计算机科学 卷积神经网络 快速傅里叶变换 人工智能 频域 模式识别(心理学) 领域(数学分析) 功率(物理) 噪音(视频) 深度学习 人工神经网络 能量(信号处理) 算法 计算机视觉 量子力学 统计 图像(数学) 物理 数学分析 数学
作者
Senfeng Cen,Dong Ok Kim,Chang Gyoon Lim
出处
期刊:Energy Science & Engineering [Wiley]
卷期号:11 (7): 2267-2280 被引量:4
标识
DOI:10.1002/ese3.1450
摘要

Abstract With the progress of renewable energy generation and energy storage technologies, more and more renewable sources and devices are integrated into the power system. Due to the complexity of the power system, single and multiple power quality disturbances (PQDs) occur more frequently. Hence, real‐time detection of PQDs is the primary issue to mitigate the risk of distortions. This study presents the real‐time PQDs classification using fused convolutional neural networks (CNN) combined with long short‐term memory (fused CNN‐LSTM) architecture based on time and frequency domain features. The frequency‐domain features were obtained from time‐series data using fast Fourier transform. The original time‐domain and frequency‐domain features are extracted by respective CNN‐LSTM structures. The extracted time and frequency domain features are concatenated to classify the PQD through fully connected layers. Our proposed method was trained and tested using 16 types of synthetic noise PQDs data generated by mathematical models, in accordance with the standard IEEE‐1159. Moreover, to further verify the performance of our approach, a simulation distributed power system is carried out to detect various PQDs. We compared three advanced neural network approaches: Deep CNN, CNN‐LSTM, and multifusion CNN (MFCNN). The fused CNN‐LSTM model takes only 0.64 ms to classify each PQDs signal and achieves an accuracy of 98.95% and 98.89% in synthetic data and simulated power systems which indicates our proposed method outperformed compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静流年完成签到,获得积分20
1秒前
today发布了新的文献求助10
2秒前
情怀应助陈哈哈采纳,获得10
2秒前
2秒前
2秒前
潘多拉完成签到,获得积分10
3秒前
柠檬檬茶发布了新的文献求助10
3秒前
3秒前
4秒前
18520838753完成签到,获得积分10
4秒前
科研通AI6应助Kkkkkk采纳,获得10
4秒前
俊逸的无心完成签到,获得积分20
4秒前
5秒前
英俊的铭应助yuhong采纳,获得10
5秒前
6秒前
小马甲应助non平行线采纳,获得10
7秒前
打打应助AIA7采纳,获得10
7秒前
烦了发布了新的文献求助10
7秒前
7秒前
快乐科研完成签到,获得积分10
7秒前
欢呼香芋完成签到,获得积分10
7秒前
臣不穀完成签到,获得积分10
8秒前
8秒前
何怡发布了新的文献求助10
8秒前
9秒前
9秒前
大鸭梨完成签到,获得积分10
10秒前
10秒前
酷波er应助小小安稳采纳,获得10
10秒前
丢手绢完成签到,获得积分10
11秒前
简单发布了新的文献求助10
11秒前
寜1发布了新的文献求助10
11秒前
11秒前
Wanpengcheng发布了新的文献求助10
11秒前
xlf完成签到 ,获得积分10
11秒前
12秒前
李健应助duanhahaha采纳,获得10
12秒前
13秒前
SW发布了新的文献求助10
13秒前
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240