A fused CNN‐LSTM model using FFT with application to real‐time power quality disturbances recognition

时域 计算机科学 卷积神经网络 快速傅里叶变换 人工智能 频域 模式识别(心理学) 领域(数学分析) 功率(物理) 噪音(视频) 深度学习 人工神经网络 能量(信号处理) 算法 计算机视觉 量子力学 统计 图像(数学) 物理 数学分析 数学
作者
Senfeng Cen,Dong Ok Kim,Chang Gyoon Lim
出处
期刊:Energy Science & Engineering [Wiley]
卷期号:11 (7): 2267-2280 被引量:4
标识
DOI:10.1002/ese3.1450
摘要

Abstract With the progress of renewable energy generation and energy storage technologies, more and more renewable sources and devices are integrated into the power system. Due to the complexity of the power system, single and multiple power quality disturbances (PQDs) occur more frequently. Hence, real‐time detection of PQDs is the primary issue to mitigate the risk of distortions. This study presents the real‐time PQDs classification using fused convolutional neural networks (CNN) combined with long short‐term memory (fused CNN‐LSTM) architecture based on time and frequency domain features. The frequency‐domain features were obtained from time‐series data using fast Fourier transform. The original time‐domain and frequency‐domain features are extracted by respective CNN‐LSTM structures. The extracted time and frequency domain features are concatenated to classify the PQD through fully connected layers. Our proposed method was trained and tested using 16 types of synthetic noise PQDs data generated by mathematical models, in accordance with the standard IEEE‐1159. Moreover, to further verify the performance of our approach, a simulation distributed power system is carried out to detect various PQDs. We compared three advanced neural network approaches: Deep CNN, CNN‐LSTM, and multifusion CNN (MFCNN). The fused CNN‐LSTM model takes only 0.64 ms to classify each PQDs signal and achieves an accuracy of 98.95% and 98.89% in synthetic data and simulated power systems which indicates our proposed method outperformed compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得30
刚刚
迪迪发布了新的文献求助10
刚刚
星空完成签到,获得积分10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得70
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
ddddyooo发布了新的文献求助10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得30
刚刚
周子文完成签到,获得积分10
刚刚
Orange应助科研通管家采纳,获得30
刚刚
QZ发布了新的文献求助10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得30
1秒前
玊尔完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得20
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
嘿嘿应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
慕青应助科研通管家采纳,获得30
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770