BabyNutri

自编码 计算机科学 一般化 营养物 分光计 人工智能 模式识别(心理学) 数学 深度学习 化学 光学 物理 数学分析 有机化学
作者
Haiyan Hu,Qianyi Huang,Qian Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (1): 1-30 被引量:2
标识
DOI:10.1145/3580858
摘要

The physical and physiological development of infants and toddlers requires the proper amount of macronutrient intake, making it an essential problem to estimate the macronutrient in baby food. Nevertheless, existing solutions are either too expensive or poor performing, preventing the widespread use of automatic baby nutrient intake logging. To narrow this gap, this paper proposes a cost-effective and portable baby food macronutrient estimation system, BabyNutri. BabyNutri exploits a novel spectral reconstruction algorithm to reconstruct high-dimensional informative spectra from low-dimensional spectra, which are available from low-cost spectrometers. We propose a denoising autoencoder for the reconstruction process, by which BabyNutri can reconstruct a 160-dimensional spectrum from a 5-dimensional spectrum. Since the high-dimensional spectrum is rich in light absorption features of macronutrients, it can achieve more accurate macronutrient estimation. In addition, considering that baby food contains complex ingredients, we also design a CNN nutrition estimation model with good generalization performance over various types of baby food. Our extensive experiments over 88 types of baby food show that the spectral reconstruction error of BabyNutri is only 5.91%, reducing 33% than the state-of-the-art baseline with the same time complexity. In addition, the nutrient estimation performance of BabyNutri not only obviously outperforms state-of-the-art and cost-effective solutions but also is highly correlated with the professional spectrometer, with the correlation coefficients of 0.81, 0.88, 0.82 for protein, fat, and carbohydrate, respectively. However the price of our system is only one percent of the commercial solution. We also validate that BabyNutri is robust regarding various factors, e.g., ambient light, food volume, and even unseen baby food samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxxx发布了新的文献求助10
刚刚
科研通AI6应助yundong采纳,获得10
刚刚
zimmermen完成签到,获得积分10
刚刚
ifast完成签到 ,获得积分10
刚刚
1秒前
1秒前
嘟嘟嘟完成签到,获得积分20
1秒前
1秒前
明天更好发布了新的文献求助10
2秒前
不来也不去完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助吕不韦采纳,获得10
3秒前
3秒前
HeAuBook完成签到,获得积分0
3秒前
AR发布了新的文献求助10
4秒前
cc关闭了cc文献求助
4秒前
h7nho完成签到,获得积分10
5秒前
科研通AI5应助zhengriqian采纳,获得10
5秒前
0s7完成签到,获得积分10
5秒前
ajing完成签到,获得积分10
5秒前
6秒前
传奇3应助东方耀采纳,获得10
6秒前
胖丁完成签到,获得积分10
7秒前
童紫槐完成签到,获得积分10
7秒前
7秒前
灵泉完成签到,获得积分10
8秒前
小曹完成签到,获得积分10
8秒前
王智勇发布了新的文献求助10
8秒前
zhishiyumi完成签到,获得积分10
9秒前
现代的南风完成签到 ,获得积分10
9秒前
wanci应助筱静采纳,获得10
10秒前
ww发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
明理含之发布了新的文献求助60
11秒前
puff完成签到,获得积分10
11秒前
牛顿的苹果完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067449
求助须知:如何正确求助?哪些是违规求助? 4289266
关于积分的说明 13362795
捐赠科研通 4108762
什么是DOI,文献DOI怎么找? 2249909
邀请新用户注册赠送积分活动 1255368
关于科研通互助平台的介绍 1187865