氢
易燃液体
泄漏(经济)
屋顶
体积热力学
机械
环境科学
材料科学
化学
废物管理
热力学
结构工程
物理
工程类
有机化学
经济
宏观经济学
作者
Weiyi Cui,Yupeng Yuan,Liang Tong,Boyang Shen
标识
DOI:10.1016/j.ijhydene.2023.03.208
摘要
Ningbo's seaport hydrogen refueling station was used as the research object. The effects of different leakage angles, wind direction, roof shape, leakage hole diameters, temperature, and humidity on the diffusion of hydrogen leakage were studied by numerical simulation. The influence of leakage angle on hydrogen leakage is mainly reflected in the presence or absence of obstacles. The volume of the flammable hydrogen cloud was reduced by 31.16%, and the volume of the hazardous hydrogen cloud was reduced by 63.22% when there was no obstacle. The wind direction can significantly impact hydrogen leakage, with downwind and sidewind accelerating hydrogen discharge and reducing the risk. At the same time, headwind significantly increases the volume of the flammable hydrogen cloud. Compared with no wind, the volume of the flammable hydrogen cloud increased by 71.73% when headwind, but the volume of the hazardous hydrogen cloud decreased by 24.00%. If hydrogen shows signs of accumulation under the roof, the sloping roof can effectively reduce the hydrogen concentration under the roof and accelerate the hydrogen discharge. When the leakage angle θ = 90°, the sloping roof reduced the volume of the flammable hydrogen cloud by 11.74%. The leakage process was similar for different leak hole diameters in the no wind condition. The inverse of the molar fraction of hydrogen on the jet centerline was linearly related to the dimensionless axial distance of the jet in different cases. Using a least squares fit, the decay rate was obtained as 0.0039. In contrast, temperature and humidity have almost no effect on hydrogen diffusion. Hydrogen tends to accumulate on the lower surface of the roof, near the roof pillars and the hydrogen dispenser. In this paper, a set of hydrogen detector layout schemes was developed, and the alarm success rate was verified to be 83.33%.
科研通智能强力驱动
Strongly Powered by AbleSci AI