Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms

蛋白质结构预测 计算机科学 计算生物学 数据科学 蛋白质结构 生物 生物化学
作者
Bin Huang,Lupeng Kong,Chao Wang,Fusong Ju,Qi Zhang,Jianwei Zhu,Tiansu Gong,Haicang Zhang,Chungong Yu,Wei‐Mou Zheng,Dongbo Bu
出处
期刊:Genomics, Proteomics & Bioinformatics [Elsevier]
卷期号:21 (5): 913-925 被引量:19
标识
DOI:10.1016/j.gpb.2022.11.014
摘要

Abstract Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields, including biochemistry, medicine, physics, mathematics, and computer science. These researchers adopt various research paradigms to attack the same structure prediction problem: biochemists and physicists attempt to reveal the principles governing protein folding; mathematicians, especially statisticians, usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure, while computer scientists formulate protein structure prediction as an optimization problem — finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure. These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman, namely, data modeling and algorithmic modeling. Recently, we have also witnessed the great success of deep learning in protein structure prediction. In this review, we present a survey of the efforts for protein structure prediction. We compare the research paradigms adopted by researchers from different fields, with an emphasis on the shift of research paradigms in the era of deep learning. In short, the algorithmic modeling techniques, especially deep neural networks, have considerably improved the accuracy of protein structure prediction; however, theories interpreting the neural networks and knowledge on protein folding are still highly desired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
哎呦喂喂应助研友_nxGyxL采纳,获得10
4秒前
4秒前
4秒前
白糖发布了新的文献求助10
4秒前
雪花落在丛林完成签到,获得积分10
7秒前
流星发布了新的文献求助10
8秒前
大力沛萍发布了新的文献求助10
8秒前
阿秧发布了新的文献求助10
9秒前
9秒前
风中的丝袜完成签到,获得积分10
10秒前
11秒前
Marciu33发布了新的文献求助10
11秒前
Lucas应助姬昂采纳,获得10
13秒前
14秒前
乐乐应助七斤文采纳,获得10
15秒前
仔仔发布了新的文献求助10
16秒前
雪sung发布了新的文献求助10
16秒前
刘潼潼发布了新的文献求助10
18秒前
20秒前
22秒前
FashionBoy应助犇骉采纳,获得10
22秒前
Paddi发布了新的文献求助10
23秒前
顾北发布了新的文献求助10
23秒前
华仔应助Pepper采纳,获得10
25秒前
25秒前
共享精神应助qzj采纳,获得10
26秒前
27秒前
GATT完成签到,获得积分20
28秒前
1004发布了新的文献求助30
29秒前
火乐发布了新的文献求助30
29秒前
why发布了新的文献求助10
29秒前
流星飞发布了新的文献求助10
30秒前
30秒前
完美世界应助LT采纳,获得10
30秒前
31秒前
英姑应助刘潼潼采纳,获得30
32秒前
orixero应助科研通管家采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293