S3 map: Semisupervised aspect-based sentiment analysis with masked aspect prediction

计算机科学 情绪分析 人工智能 任务(项目管理) 自然语言处理 编码器 机器学习 管理 经济 操作系统
作者
Zhiyao Yang,Bing Wang,Ximing Li,Meng Wan,Jihong Ouyang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:269: 110513-110513 被引量:8
标识
DOI:10.1016/j.knosys.2023.110513
摘要

Aspect-based sentiment analysis (ABSA) refers to a fine-grained task of detecting the sentiment polarities of sentences at the aspect level. To resolve this task, ABSA training samples must be annotated with aspect words and the corresponding sentiment polarities. However, collecting such fine-grained training samples is expensive and time-consuming. Therefore the available ABSA training samples are often scarce. To break the data scarcity challenge of ABSA, we investigate semi-supervised aspect-based sentiment analysis (SemiABSA), which trains ABSA models using a limited amount of expensive labeled sentences and more unlabeled-yet-cheaper sentences. We propose a novel SemiABSA framework, namely semi-supervised aspect-based sentiment analysis with masked aspect prediction (S3 map), built on the self-training paradigm. We form pseudo-aspect words and pseudo-sentiment polarities for unlabeled sentences and improve model training. Specifically, a BERT-encoder-based masked aspect prediction (MAP) task achieves the pseudo-aspect words generation. Based on S3 map, we thoroughly investigate the potential of SemiABSA from various perspectives. The empirical results show that S3 map can consistently improve performance by leveraging unlabeled sentences, even those from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
英姑应助Karol采纳,获得10
1秒前
完美世界应助Li采纳,获得10
2秒前
HHH完成签到,获得积分10
2秒前
Ijen发布了新的文献求助50
3秒前
7秒前
7秒前
科研通AI2S应助橙汁采纳,获得10
9秒前
贪玩冰海完成签到,获得积分20
9秒前
吼隆隆隆发布了新的文献求助10
9秒前
10秒前
藤椒辣鱼应助znl采纳,获得10
12秒前
马赫发布了新的文献求助10
13秒前
奥拉同学完成签到,获得积分10
14秒前
Jasper应助albertxin采纳,获得10
15秒前
lllzk完成签到,获得积分20
15秒前
moumou应助LJL采纳,获得10
16秒前
17秒前
SciGPT应助阿肯李采纳,获得10
17秒前
北酒鱼完成签到,获得积分10
17秒前
17秒前
自由的傲柏完成签到,获得积分20
18秒前
19秒前
曾经耳机发布了新的文献求助10
19秒前
CipherSage应助123采纳,获得10
19秒前
小po的车车关注了科研通微信公众号
22秒前
上官若男应助平淡夏云采纳,获得10
22秒前
须尽欢发布了新的文献求助10
22秒前
22秒前
22秒前
迷恋发布了新的文献求助10
22秒前
24秒前
顾初安完成签到,获得积分10
25秒前
25秒前
然大宝完成签到,获得积分10
26秒前
honghonge发布了新的文献求助10
26秒前
26秒前
26秒前
windtalker发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459815
求助须知:如何正确求助?哪些是违规求助? 3054040
关于积分的说明 9040262
捐赠科研通 2743383
什么是DOI,文献DOI怎么找? 1504849
科研通“疑难数据库(出版商)”最低求助积分说明 695430
邀请新用户注册赠送积分活动 694717