Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network

联营 人工智能 模式识别(心理学) 特征(语言学) 计算机科学 瓶颈 频道(广播) 数学 数据库 计算机网络 哲学 语言学 嵌入式系统
作者
Yulong Nan,Huichun Zhang,Yong Zeng,Jiaqiang Zheng,Yufeng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107780-107780 被引量:32
标识
DOI:10.1016/j.compag.2023.107780
摘要

In a densely planted orchard, factors such as light variation, branch occlusion, and fruit in non-picking rows had a great impact on the pitaya detection accuracy. In this study, a new WGB-YOLO network was developed and tested for multi-class pitaya fruits detection in target picking rows. The proposed WFE-C4 module was obtained by adding two wings feature enhancement structure based on Bottleneck and cascading MetaAconC functions, which independently enhanced feature extraction from the channel and spatial dimensions. A backbone network with WFE-C4 to replace YOLOv3′s Darknet53 was constructed. The proposed GF-SPP used average pooling and global average pooling instead of 2 maximum pooling in SPP, and the global average pooling features were used as independent channels to strengthen the average and maximum pooling features respectively, which simultaneously achieved multi-scale fusion of features and feature enhancement. The new WGB-YOLO network used a Bi-FPN structured head network to achieve a balanced fusion of multi-scale features. The tests showed that the mAP of multi-lass pitaya in the target picking rows was 86.0% using WGB-YOLO detection, while the AP of NO, FCC, and OB fruit were 96.0%, 84.4%, and 77.6%, respectively. WGB-YOLO improved the AP of the original model for detecting OB fruits by 10.5%, which indicated a significant improvement in model detection performance. Compared with 8 other deep networks such as YOLOv7, WGB-YOLO obtained the highest mAP for detecting multi-class pitaya while maintaining a better detection speed. WGB-YOLO showed good performance in detecting pitaya in densely pitaya planted orchards, which provided a technical foundation for fruit detection in robotic picking of the target rows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mol完成签到 ,获得积分10
刚刚
Tian发布了新的文献求助10
1秒前
嘟嘟请让一让完成签到,获得积分10
2秒前
3秒前
wenlongliu完成签到,获得积分10
3秒前
aaashirz_发布了新的文献求助10
3秒前
4秒前
1223完成签到,获得积分10
4秒前
李爱国应助薛定谔的猫采纳,获得10
4秒前
Absinthe发布了新的文献求助10
4秒前
苦学僧完成签到,获得积分10
5秒前
5秒前
Nathan发布了新的文献求助10
5秒前
Hello应助火星上的半梅采纳,获得10
5秒前
王俊1314完成签到 ,获得积分10
6秒前
luke17743508621完成签到 ,获得积分10
6秒前
青山完成签到,获得积分10
6秒前
会飞的鱼完成签到,获得积分10
6秒前
天天快乐应助陈军采纳,获得10
7秒前
7秒前
yulong完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
漂亮小白菜完成签到,获得积分20
8秒前
舒适夜南完成签到,获得积分20
9秒前
轮回1奇点完成签到,获得积分10
9秒前
泡泡泡芙完成签到,获得积分10
9秒前
小二郎应助Polaris采纳,获得10
9秒前
安详的断缘完成签到,获得积分10
9秒前
李爱国应助杰克采纳,获得10
9秒前
不想长大完成签到 ,获得积分20
10秒前
不二发布了新的文献求助10
10秒前
里里完成签到,获得积分10
11秒前
lpp_发布了新的文献求助10
11秒前
11秒前
11秒前
athena完成签到,获得积分10
11秒前
阿郑发布了新的文献求助10
12秒前
着急的傲菡完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459