已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network

联营 人工智能 模式识别(心理学) 特征(语言学) 计算机科学 瓶颈 频道(广播) 数学 数据库 计算机网络 语言学 哲学 嵌入式系统
作者
Yulong Nan,Huichun Zhang,Yong Zeng,Jiaqiang Zheng,Yufeng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:208: 107780-107780 被引量:32
标识
DOI:10.1016/j.compag.2023.107780
摘要

In a densely planted orchard, factors such as light variation, branch occlusion, and fruit in non-picking rows had a great impact on the pitaya detection accuracy. In this study, a new WGB-YOLO network was developed and tested for multi-class pitaya fruits detection in target picking rows. The proposed WFE-C4 module was obtained by adding two wings feature enhancement structure based on Bottleneck and cascading MetaAconC functions, which independently enhanced feature extraction from the channel and spatial dimensions. A backbone network with WFE-C4 to replace YOLOv3′s Darknet53 was constructed. The proposed GF-SPP used average pooling and global average pooling instead of 2 maximum pooling in SPP, and the global average pooling features were used as independent channels to strengthen the average and maximum pooling features respectively, which simultaneously achieved multi-scale fusion of features and feature enhancement. The new WGB-YOLO network used a Bi-FPN structured head network to achieve a balanced fusion of multi-scale features. The tests showed that the mAP of multi-lass pitaya in the target picking rows was 86.0% using WGB-YOLO detection, while the AP of NO, FCC, and OB fruit were 96.0%, 84.4%, and 77.6%, respectively. WGB-YOLO improved the AP of the original model for detecting OB fruits by 10.5%, which indicated a significant improvement in model detection performance. Compared with 8 other deep networks such as YOLOv7, WGB-YOLO obtained the highest mAP for detecting multi-class pitaya while maintaining a better detection speed. WGB-YOLO showed good performance in detecting pitaya in densely pitaya planted orchards, which provided a technical foundation for fruit detection in robotic picking of the target rows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助皮皮蟹采纳,获得10
1秒前
1秒前
1秒前
5秒前
小小斌完成签到,获得积分10
5秒前
LMX发布了新的文献求助10
10秒前
13秒前
13秒前
yang完成签到 ,获得积分10
16秒前
沉静安荷给沉静安荷的求助进行了留言
16秒前
皮皮蟹发布了新的文献求助10
17秒前
轻松的惜芹应助科研达人采纳,获得10
19秒前
广州小肥羊完成签到 ,获得积分10
22秒前
皮皮蟹完成签到,获得积分10
26秒前
完美世界应助ceeray23采纳,获得20
31秒前
曾经的电脑完成签到 ,获得积分10
36秒前
Sky完成签到,获得积分10
36秒前
握瑾怀瑜完成签到 ,获得积分0
37秒前
轻松的惜芹应助科研达人采纳,获得10
40秒前
Orange应助高兴的忆曼采纳,获得10
42秒前
平淡访冬完成签到 ,获得积分10
49秒前
jokerhoney完成签到,获得积分10
51秒前
李娇完成签到 ,获得积分10
52秒前
李姝完成签到 ,获得积分10
53秒前
李昕123完成签到 ,获得积分10
55秒前
57秒前
干净涵梅发布了新的文献求助10
1分钟前
星辰大海应助大喵采纳,获得10
1分钟前
CC发布了新的文献求助10
1分钟前
你大米哥完成签到 ,获得积分10
1分钟前
asaki完成签到,获得积分10
1分钟前
瑞瑞刘完成签到 ,获得积分10
1分钟前
freshfire完成签到 ,获得积分10
1分钟前
爱吃大米饭完成签到 ,获得积分10
1分钟前
1分钟前
yx_cheng应助CC采纳,获得30
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
大喵发布了新的文献求助10
1分钟前
传奇3应助滴滴哒采纳,获得10
1分钟前
大喵完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532047
关于积分的说明 11256141
捐赠科研通 3270918
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216