亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network

联营 人工智能 模式识别(心理学) 特征(语言学) 计算机科学 瓶颈 频道(广播) 数学 数据库 计算机网络 哲学 语言学 嵌入式系统
作者
Yulong Nan,Huichun Zhang,Yong Zeng,Jiaqiang Zheng,Yufeng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107780-107780 被引量:18
标识
DOI:10.1016/j.compag.2023.107780
摘要

In a densely planted orchard, factors such as light variation, branch occlusion, and fruit in non-picking rows had a great impact on the pitaya detection accuracy. In this study, a new WGB-YOLO network was developed and tested for multi-class pitaya fruits detection in target picking rows. The proposed WFE-C4 module was obtained by adding two wings feature enhancement structure based on Bottleneck and cascading MetaAconC functions, which independently enhanced feature extraction from the channel and spatial dimensions. A backbone network with WFE-C4 to replace YOLOv3′s Darknet53 was constructed. The proposed GF-SPP used average pooling and global average pooling instead of 2 maximum pooling in SPP, and the global average pooling features were used as independent channels to strengthen the average and maximum pooling features respectively, which simultaneously achieved multi-scale fusion of features and feature enhancement. The new WGB-YOLO network used a Bi-FPN structured head network to achieve a balanced fusion of multi-scale features. The tests showed that the mAP of multi-lass pitaya in the target picking rows was 86.0% using WGB-YOLO detection, while the AP of NO, FCC, and OB fruit were 96.0%, 84.4%, and 77.6%, respectively. WGB-YOLO improved the AP of the original model for detecting OB fruits by 10.5%, which indicated a significant improvement in model detection performance. Compared with 8 other deep networks such as YOLOv7, WGB-YOLO obtained the highest mAP for detecting multi-class pitaya while maintaining a better detection speed. WGB-YOLO showed good performance in detecting pitaya in densely pitaya planted orchards, which provided a technical foundation for fruit detection in robotic picking of the target rows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
kai chen完成签到 ,获得积分0
24秒前
33秒前
37秒前
彭于晏应助二三采纳,获得10
38秒前
40秒前
LAN完成签到,获得积分10
40秒前
季1发布了新的文献求助30
45秒前
CipherSage应助科研通管家采纳,获得10
46秒前
大模型应助科研通管家采纳,获得10
47秒前
爱静静应助科研通管家采纳,获得10
47秒前
小蘑菇应助科研通管家采纳,获得10
47秒前
47秒前
jfuU发布了新的文献求助10
50秒前
山南水北发布了新的文献求助10
55秒前
科研通AI2S应助Luke采纳,获得10
56秒前
57秒前
59秒前
1分钟前
二三发布了新的文献求助10
1分钟前
老马哥完成签到,获得积分0
1分钟前
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助单薄的采萱采纳,获得10
1分钟前
wyd发布了新的文献求助10
1分钟前
ccm应助小冉采纳,获得30
1分钟前
NexusExplorer应助子月之路采纳,获得10
1分钟前
大个应助二三采纳,获得30
1分钟前
山止川行完成签到 ,获得积分10
1分钟前
1分钟前
垚祎完成签到 ,获得积分10
1分钟前
1分钟前
江湖小妖完成签到 ,获得积分10
1分钟前
打打应助Gavin采纳,获得30
1分钟前
二三发布了新的文献求助30
1分钟前
图书馆碎碎念的葱花完成签到,获得积分10
1分钟前
1分钟前
Becky完成签到 ,获得积分10
1分钟前
AUGKING27完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126036
求助须知:如何正确求助?哪些是违规求助? 2776256
关于积分的说明 7729636
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292200
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392