Clustering-segmentation network: a parallel dual-branch synthetic aperture radar image change detection framework

计算机科学 人工智能 聚类分析 变更检测 合成孔径雷达 模式识别(心理学) 图像分割 分割 散斑噪声 基于分割的对象分类 模糊聚类 尺度空间分割 计算机视觉 斑点图案
作者
Jinjie Wang,Xiaoqing Wang,Lingxi Guo,Yanlang Xu,Zheng Lu,Bing Chen
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (5): 1579-1610
标识
DOI:10.1080/01431161.2023.2187722
摘要

Synthetic aperture radar (SAR) image change detection is a key technique for such essential applications as flood disaster assessment and forest fire detection. In SAR image change detection, clustering algorithm is the most applied methods, but clustering algorithm only considers the grey features, therefore it is more susceptible to speckle noise. Deep learning model is difficult to be trained by supervised learning because of lack of labels. To alleviate the above-mentioned challenges of SAR image change detection, a parallel dual-branch SAR image change detection network based on clustering and segmentation (Clustering-Segmentation Network) is proposed in this paper. In the clustering branch, the clustering-based change detection results were obtained by fuzzy c-means (FCM) clustering. In the segmentation branch, the Graph-Based Image Segmentation algorithm was used for pre-segmentation. These results were used as labels of the neural network for training for the segmentation-based change detection. After the fusion of these dual-branch, a double sparse dictionary (DSD) discrimination algorithm is proposed to extract the neighbourhood features for the final discrimination, and obtain the final results. By fusing the dual-branch results, the influence of speckle noise on change detection can be suppressed while maintaining a high accuracy. We show that the Clustering-Segmentation Network exhibited better results compared with existing algorithms on several datasets. The accuracy and kappa coefficients are improved by 0.83% and 3.45% respectively, thereby proving the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LGZ发布了新的文献求助10
1秒前
1秒前
1秒前
傻傻尊主发布了新的文献求助10
2秒前
纳斯达克发布了新的文献求助20
2秒前
3秒前
berry完成签到,获得积分10
3秒前
FashionBoy应助乐易天采纳,获得10
4秒前
spy发布了新的文献求助10
4秒前
一个薯片完成签到,获得积分10
4秒前
徐晓雨完成签到,获得积分10
4秒前
5秒前
5秒前
迟大猫应助一一采纳,获得10
5秒前
啵乐乐发布了新的文献求助10
5秒前
大模型应助拾柒采纳,获得10
6秒前
fys131415完成签到 ,获得积分10
6秒前
Akim应助胖胖采纳,获得10
7秒前
大模型应助小趴蔡采纳,获得10
7秒前
打打应助nicewink采纳,获得10
7秒前
8秒前
8秒前
平常的书南完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
刘l发布了新的文献求助10
10秒前
天天快乐应助李龙龙采纳,获得10
11秒前
凌虔完成签到 ,获得积分10
11秒前
归尘应助傢誠采纳,获得10
11秒前
日富一日完成签到,获得积分10
11秒前
12秒前
傻傻尊主完成签到,获得积分20
12秒前
12秒前
哈哈完成签到,获得积分10
13秒前
陆易形完成签到,获得积分10
13秒前
zym发布了新的文献求助10
13秒前
东陈西就发布了新的文献求助30
13秒前
13秒前
xiaowang完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540108
求助须知:如何正确求助?哪些是违规求助? 3117659
关于积分的说明 9331633
捐赠科研通 2815308
什么是DOI,文献DOI怎么找? 1547522
邀请新用户注册赠送积分活动 721033
科研通“疑难数据库(出版商)”最低求助积分说明 712411