Automated Detection and Localization of Myocardial Infarction With Interpretability Analysis Based on Deep Learning

可解释性 计算机科学 人工智能 深度学习 模式识别(心理学) 特征(语言学) 铅(地质) 特征提取 残余物 可视化 代表(政治) 机器学习 数据挖掘 哲学 语言学 算法 地貌学 政治 政治学 法学 地质学
作者
Chuang Han,Jiajia Sun,Yingnan Bian,Wenge Que,Li Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:14
标识
DOI:10.1109/tim.2023.3258521
摘要

Electrocardiogram (ECG) is a non-invasive, simplest and fastest way to diagnose myocardial infarction (MI). Although different methods have been leveraged based upon deep learning covered by existing studies, the spatial-temporal relationship in the lead and between leads has not been deeply analyzed. To address the issue, a novel multi-lead branch with the residual network integrated with squeeze and excitation networks and bidirectional long short-term memory model named MLB-ResNet-SENet-BL was presented. Firstly, spatial features were exploited by the morphological information representation network in the lead based on MLB-ResNet. Then, these feature mappings among these spatial features based on SENet were strengthened and weakened by the importance analysis network of feature mapping in the lead, respectively. Additionally, the temporal features were extracted by the dependency network between the lead based on BLSTM. Meanwhile, the model was evaluated using 5-fold cross validation for MI detection and localization based on PTB and PTB-XL. The resulting model outperforms the state-of-the-art studies for intra-patient and inter-patient paradigms. The interpretability analysis using class activation mapping with gradient was also leveraged for visualization of the specific QRS waves and ST-T segments of 12-leads ECG, which demonstrated that the highlighted parts of heat maps were completely in line with the diagnostic basis and strategy of doctors. Deployment of such models can potentially help ensure the life safety of patients and strive for the best treatment opportunity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助满_1999采纳,获得10
刚刚
刚刚
2秒前
Ava应助fafafa采纳,获得10
3秒前
4秒前
科研通AI6应助alex采纳,获得10
5秒前
李健的小迷弟应助炎燚采纳,获得10
6秒前
闪闪的雨柏完成签到,获得积分10
7秒前
科研通AI6应助shengsheng采纳,获得10
8秒前
8秒前
科研通AI2S应助weixin112233采纳,获得10
8秒前
酷波er应助May采纳,获得10
8秒前
9秒前
9秒前
爱吃米线发布了新的文献求助10
9秒前
郑浩龙完成签到,获得积分10
9秒前
9秒前
Jane_Xin发布了新的文献求助10
10秒前
79完成签到,获得积分10
11秒前
ll完成签到,获得积分10
11秒前
11秒前
小卡拉米应助黎明采纳,获得10
11秒前
XiaoYuuu完成签到,获得积分10
11秒前
FashionBoy应助喂喂喂采纳,获得10
12秒前
Lei完成签到,获得积分10
12秒前
饭米粒发布了新的文献求助10
15秒前
15秒前
魔音甜菜完成签到,获得积分10
15秒前
ankang完成签到,获得积分10
15秒前
15秒前
16秒前
度帕明完成签到,获得积分10
17秒前
Jasper应助粗心的无剑采纳,获得10
17秒前
FashionBoy应助甜蜜的松思采纳,获得10
17秒前
18秒前
迅速的谷菱关注了科研通微信公众号
18秒前
18秒前
ankang发布了新的文献求助10
19秒前
19秒前
liliping发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524