Automated Detection and Localization of Myocardial Infarction With Interpretability Analysis Based on Deep Learning

可解释性 计算机科学 人工智能 深度学习 模式识别(心理学) 特征(语言学) 铅(地质) 特征提取 残余物 可视化 代表(政治) 机器学习 数据挖掘 哲学 语言学 算法 地貌学 政治 政治学 法学 地质学
作者
Chuang Han,Jiajia Sun,Yingnan Bian,Wenge Que,Li Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:14
标识
DOI:10.1109/tim.2023.3258521
摘要

Electrocardiogram (ECG) is a non-invasive, simplest and fastest way to diagnose myocardial infarction (MI). Although different methods have been leveraged based upon deep learning covered by existing studies, the spatial-temporal relationship in the lead and between leads has not been deeply analyzed. To address the issue, a novel multi-lead branch with the residual network integrated with squeeze and excitation networks and bidirectional long short-term memory model named MLB-ResNet-SENet-BL was presented. Firstly, spatial features were exploited by the morphological information representation network in the lead based on MLB-ResNet. Then, these feature mappings among these spatial features based on SENet were strengthened and weakened by the importance analysis network of feature mapping in the lead, respectively. Additionally, the temporal features were extracted by the dependency network between the lead based on BLSTM. Meanwhile, the model was evaluated using 5-fold cross validation for MI detection and localization based on PTB and PTB-XL. The resulting model outperforms the state-of-the-art studies for intra-patient and inter-patient paradigms. The interpretability analysis using class activation mapping with gradient was also leveraged for visualization of the specific QRS waves and ST-T segments of 12-leads ECG, which demonstrated that the highlighted parts of heat maps were completely in line with the diagnostic basis and strategy of doctors. Deployment of such models can potentially help ensure the life safety of patients and strive for the best treatment opportunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flynn发布了新的文献求助10
1秒前
1秒前
2秒前
充电宝应助无情慕卉采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
cl发布了新的文献求助10
5秒前
小周小周发布了新的文献求助20
5秒前
5秒前
刁俊辉完成签到,获得积分20
8秒前
魑魅魍魉发布了新的文献求助10
8秒前
yeah发布了新的文献求助10
8秒前
orixero应助mumu采纳,获得10
8秒前
9秒前
10秒前
Lucas应助赵小天采纳,获得10
10秒前
烟花应助努力学习ing采纳,获得10
11秒前
Fairy完成签到,获得积分10
12秒前
14秒前
烟花应助3333采纳,获得10
15秒前
发nature完成签到 ,获得积分10
16秒前
王叮叮发布了新的文献求助10
16秒前
地平线发布了新的文献求助10
16秒前
在水一方应助cr7采纳,获得10
17秒前
17秒前
17秒前
上官若男应助别来无恙采纳,获得10
18秒前
CodeCraft应助xwz626采纳,获得10
18秒前
keyantong完成签到,获得积分10
18秒前
19秒前
充电宝应助jerry采纳,获得10
20秒前
21秒前
jiangmingjiao发布了新的文献求助20
21秒前
22秒前
寻雾启事发布了新的文献求助10
22秒前
23秒前
佳佳发布了新的文献求助10
23秒前
lilywang发布了新的文献求助10
24秒前
LLLL发布了新的文献求助10
24秒前
桐桐应助WWW采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916