亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Detection and Localization of Myocardial Infarction With Interpretability Analysis Based on Deep Learning

可解释性 计算机科学 人工智能 深度学习 模式识别(心理学) 特征(语言学) 铅(地质) 特征提取 残余物 可视化 代表(政治) 机器学习 数据挖掘 哲学 语言学 算法 地貌学 政治 政治学 法学 地质学
作者
Chuang Han,Jiajia Sun,Yingnan Bian,Wenge Que,Li Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:14
标识
DOI:10.1109/tim.2023.3258521
摘要

Electrocardiogram (ECG) is a non-invasive, simplest and fastest way to diagnose myocardial infarction (MI). Although different methods have been leveraged based upon deep learning covered by existing studies, the spatial-temporal relationship in the lead and between leads has not been deeply analyzed. To address the issue, a novel multi-lead branch with the residual network integrated with squeeze and excitation networks and bidirectional long short-term memory model named MLB-ResNet-SENet-BL was presented. Firstly, spatial features were exploited by the morphological information representation network in the lead based on MLB-ResNet. Then, these feature mappings among these spatial features based on SENet were strengthened and weakened by the importance analysis network of feature mapping in the lead, respectively. Additionally, the temporal features were extracted by the dependency network between the lead based on BLSTM. Meanwhile, the model was evaluated using 5-fold cross validation for MI detection and localization based on PTB and PTB-XL. The resulting model outperforms the state-of-the-art studies for intra-patient and inter-patient paradigms. The interpretability analysis using class activation mapping with gradient was also leveraged for visualization of the specific QRS waves and ST-T segments of 12-leads ECG, which demonstrated that the highlighted parts of heat maps were completely in line with the diagnostic basis and strategy of doctors. Deployment of such models can potentially help ensure the life safety of patients and strive for the best treatment opportunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助thousandlong采纳,获得10
2秒前
8秒前
9秒前
无花果应助a11835采纳,获得10
12秒前
专注的飞瑶完成签到 ,获得积分10
18秒前
22秒前
王sir完成签到 ,获得积分10
24秒前
thousandlong发布了新的文献求助10
29秒前
无花果应助桃子采纳,获得10
29秒前
Miracle完成签到,获得积分10
31秒前
思源应助科研通管家采纳,获得30
36秒前
毓香谷的春天完成签到 ,获得积分10
38秒前
CC完成签到,获得积分10
44秒前
阿意关注了科研通微信公众号
45秒前
紫zi完成签到 ,获得积分10
48秒前
claud完成签到 ,获得积分10
53秒前
硬汉的长强穴完成签到,获得积分10
54秒前
57秒前
阳阳阳完成签到 ,获得积分10
57秒前
吕懿发布了新的文献求助10
1分钟前
圆圆圆完成签到 ,获得积分10
1分钟前
满意的芸完成签到 ,获得积分10
1分钟前
领导范儿应助Mok采纳,获得10
1分钟前
Enchanted完成签到 ,获得积分10
1分钟前
1分钟前
衣裳薄完成签到,获得积分10
1分钟前
领导范儿应助阿意采纳,获得10
1分钟前
1分钟前
Mok发布了新的文献求助10
1分钟前
桃子发布了新的文献求助10
1分钟前
zho发布了新的文献求助10
1分钟前
谦让凝琴完成签到,获得积分10
1分钟前
随性随缘随命完成签到 ,获得积分10
2分钟前
2分钟前
bubble发布了新的文献求助20
2分钟前
懒洋洋发布了新的文献求助10
2分钟前
摸猪头完成签到,获得积分10
2分钟前
朱珠贝完成签到,获得积分10
2分钟前
领导范儿应助桃子采纳,获得10
2分钟前
bubble完成签到,获得积分10
2分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130122
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750386
捐赠科研通 2436099
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623708
版权声明 600570