人体躯干
机制(生物学)
刚度
运动学
控制理论(社会学)
模拟
振动
工程类
并联机械手
计算机科学
结构工程
物理
声学
人工智能
控制(管理)
医学
经典力学
量子力学
解剖
作者
Ruyue Li,Yaguang Zhu,Shuangjie Zhou,Zhimin He,Junli Sun,Liu Shaokui
标识
DOI:10.1177/01423312231174558
摘要
Quadrupeds are capable of dynamic movements such as fast running and long-distance jumping due to their flexible and elastic torso structures. In this paper, a compliant parallel mechanism is proposed as a bionic torso to simulate the diversified behaviors and agile locomotion of the tetrapod torso. The spring module is incorporated into the limb of the parallel mechanism to absorb external shocks, cushion, and dampen vibrations, thus improving the compliance performance of the bionic torso. For the compliant parallel mechanism, its kinematics and kinetics are analyzed, and the overall electromechanical system and control framework are devised. The multidimensional damping dynamic characteristics of the proposed mechanism are qualitatively analyzed by simplifying the limb into a spring–mass damping system. The parallel mechanism with compliant spring modules absorbs external forces to different degrees with different stiffness coefficients to avoid damage to the structure by external impacts. The parallel mechanism with different initial positions exhibits the inherent variable stiffness characteristics of the mechanism. The parallel mechanism simulates the diverse behavior of the animal torso, with independent and synthesized locomotor behavior of the six underlying motion patterns. Simulations and experiments demonstrated that the compliant parallel mechanism is effective in vibration damping and cushioning, with a rapid response and small steady-state error. The motion of the compliant parallel mechanism in one direction and the motion of the integrated multi-degree of freedom (DOF) are confirmed and exhibited in the behavioral experiment.
科研通智能强力驱动
Strongly Powered by AbleSci AI