Predicting COVID-19 new cases in California with Google Trends data and a machine learning approach

2019年冠状病毒病(COVID-19) 大流行 计算机科学 预测建模 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 体积热力学 2019-20冠状病毒爆发 数据科学 机器学习 数据挖掘 人工智能 医学 疾病 传染病(医学专业) 病毒学 量子力学 爆发 物理 病理
作者
Amir Habibdoust,Maryam Seifaddini,Moosa Tatar,Özgür M. Araz,Fernando A. Wilson
出处
期刊:Informatics for Health & Social Care [Informa]
卷期号:: 1-17
标识
DOI:10.1080/17538157.2024.2315246
摘要

Google Trends data can be a valuable source of information for health-related issues such as predicting infectious disease trends.To evaluate the accuracy of predicting COVID-19 new cases in California using Google Trends data, we develop and use a GMDH-type neural network model and compare its performance with a LTSM model.We predicted COVID-19 new cases using Google query data over three periods. Our first period covered March 1, 2020, to July 31, 2020, including the first peak of infection. We also estimated a model from October 1, 2020, to January 7, 2021, including the second wave of COVID-19 and avoiding possible biases from public interest in searching about the new pandemic. In addition, we extended our forecasting period from May 20, 2020, to January 31, 2021, to cover an extended period of time.Our findings show that Google relative search volume (RSV) can be used to accurately predict new COVID-19 cases. We find that among our Google relative search volume terms, "Fever," "COVID Testing," "Signs of COVID," "COVID Treatment," and "Shortness of Breath" increase model predictive accuracy.Our findings highlight the value of using data sources providing near real-time data, e.g., Google Trends, to detect trends in COVID-19 cases, in order to supplement and extend existing epidemiological models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情易蓉完成签到,获得积分10
刚刚
刚刚
微光完成签到,获得积分10
刚刚
毛毛完成签到,获得积分10
1秒前
1秒前
大大怪发布了新的文献求助20
1秒前
2秒前
2秒前
斯文败类应助欣慰雪巧采纳,获得10
3秒前
梅菜菜完成签到,获得积分10
3秒前
5秒前
Hello应助zyx采纳,获得10
6秒前
6秒前
学术小白完成签到,获得积分10
6秒前
6秒前
梅菜菜发布了新的文献求助10
6秒前
舒克发布了新的文献求助10
7秒前
Rgly完成签到 ,获得积分10
7秒前
负责中恶完成签到,获得积分10
8秒前
chihiro完成签到,获得积分20
8秒前
墨琼琼应助科研通管家采纳,获得10
8秒前
墨琼琼应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
hsr_eye完成签到,获得积分10
9秒前
9秒前
After应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得100
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933