Predicting COVID-19 new cases in California with Google Trends data and a machine learning approach

2019年冠状病毒病(COVID-19) 大流行 计算机科学 预测建模 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 体积热力学 2019-20冠状病毒爆发 数据科学 机器学习 数据挖掘 人工智能 医学 疾病 传染病(医学专业) 病毒学 量子力学 爆发 物理 病理
作者
Amir Habibdoust,Maryam Seifaddini,Moosa Tatar,Özgür M. Araz,Fernando A. Wilson
出处
期刊:Informatics for Health & Social Care [Informa]
卷期号:: 1-17
标识
DOI:10.1080/17538157.2024.2315246
摘要

Google Trends data can be a valuable source of information for health-related issues such as predicting infectious disease trends.To evaluate the accuracy of predicting COVID-19 new cases in California using Google Trends data, we develop and use a GMDH-type neural network model and compare its performance with a LTSM model.We predicted COVID-19 new cases using Google query data over three periods. Our first period covered March 1, 2020, to July 31, 2020, including the first peak of infection. We also estimated a model from October 1, 2020, to January 7, 2021, including the second wave of COVID-19 and avoiding possible biases from public interest in searching about the new pandemic. In addition, we extended our forecasting period from May 20, 2020, to January 31, 2021, to cover an extended period of time.Our findings show that Google relative search volume (RSV) can be used to accurately predict new COVID-19 cases. We find that among our Google relative search volume terms, "Fever," "COVID Testing," "Signs of COVID," "COVID Treatment," and "Shortness of Breath" increase model predictive accuracy.Our findings highlight the value of using data sources providing near real-time data, e.g., Google Trends, to detect trends in COVID-19 cases, in order to supplement and extend existing epidemiological models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助纤指细轻捻采纳,获得10
刚刚
czcmh应助研友_LmYE4L采纳,获得30
刚刚
西瓜太郎发布了新的文献求助10
1秒前
1秒前
小易发布了新的文献求助10
1秒前
田様应助STAN采纳,获得10
2秒前
FashionBoy应助巴黎的防采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助向钱看采纳,获得10
3秒前
HHHHH完成签到,获得积分10
3秒前
3秒前
勤劳蚂蚁发布了新的文献求助10
3秒前
better_zjg发布了新的文献求助10
3秒前
wanci应助风清扬采纳,获得10
3秒前
快乐一江完成签到,获得积分10
4秒前
AAA专业修蹄车师傅完成签到,获得积分10
4秒前
4秒前
4秒前
Lucas应助想读博的小王采纳,获得10
4秒前
Orange应助xiu采纳,获得10
5秒前
5秒前
5秒前
lpx43完成签到,获得积分10
5秒前
5秒前
YAN应助陈大星啊采纳,获得10
5秒前
云汐儿完成签到,获得积分10
6秒前
6秒前
LJ程励发布了新的文献求助10
6秒前
丘比特应助小薛采纳,获得10
6秒前
石墨完成签到,获得积分10
6秒前
SciGPT应助肥美的醉鸭采纳,获得30
6秒前
充电宝应助小易采纳,获得10
6秒前
积极的沛文发布了新的文献求助200
7秒前
大大怪z完成签到,获得积分20
7秒前
雲雨風完成签到,获得积分10
7秒前
薛定饿死了完成签到,获得积分10
7秒前
wp发布了新的文献求助10
7秒前
yznfly应助花花采纳,获得20
7秒前
夜轩岚完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123