分生组织
生物信息学
拟南芥
拟南芥
转录组
生物
基因家族
基因
开枪
植物
基因组
突变体
基因表达
遗传学
作者
Aiman Hina,Nadeem Khan,Keke Kong,Wenhuan Lv,Benjamin Karikari,Asim Abbasi,Tuanjie Zhao
摘要
Abstract F‐box proteins constitute a significant family in eukaryotes and, as a component of the Skp1p‐cullin‐F‐box complex, are considered critical for cellular protein degradation and other biological processes in plants. Despite their importance, the functions of F‐box proteins, particularly those with C‐terminal leucine‐rich repeat (LRR) domains, remain largely unknown in plants. Therefore, the present study conducted genome‐wide identification and in silico characterization of F‐BOX proteins with C‐terminal LRR domains in soybean ( Glycine max L.) ( GmFBXLs ). A total of 45 GmFBXLs were identified. The phylogenetic analysis showed that Gm FBXL s could be subdivided into ten subgroups and exhibited a close relationship with those from Arabidopsis thaliana , Cicer aretineum, and Medicago trunculata . It was observed that most cis‐ regulatory elements in the promoter regions of GmFBXL s are involved in hormone signalling, stress responses, and developmental stages. In silico transcriptome data illustrated diverse expression patterns of the identified GmFBXLs across various tissues, such as shoot apical meristem, flower, green pods, leaves, nodules, and roots. Overexpressing (OE) GmFBXL12 in Tianlong No.1 cultivar resulted in a significant difference in seed size, number of pods, and number of seeds per plant, indicated a potential increase in yield compared to wild type. This study offers valuable perspectives into the role of FBXLs in soybean, serving as a foundation for future research. Additionally, the identified OE lines represent valuable genetic resources for enhancing seed‐related traits in soybean.
科研通智能强力驱动
Strongly Powered by AbleSci AI