Tightly Joining Positioning and Control for Trustworthy Unmanned Aerial Vehicles Based on Factor Graph Optimization in Urban Transportation

可信赖性 计算机科学 计算机安全
作者
Peiwen Yang,Weisong Wen
标识
DOI:10.1109/itsc57777.2023.10422537
摘要

Unmanned aerial vehicles (UAV) showed great potential in improving the efficiency of parcel delivery applications in the coming smart cities era. Unfortunately, the trustworthy positioning and control algorithms of the UAV are significantly challenged in complex urban areas. For example, the ubiquitous global navigation satellite system (GNSS) positioning can be degraded by the signal reflections from surrounding high-rising buildings, leading to significantly increased positioning uncertainty. An additional challenge is introduced to the control algorithm due to the complex wind disturbances in urban canyons. Given the fact that the system positioning and control are highly correlated with each other, for example, the system dynamics of the control can largely help with the positioning, this paper proposed a joint positioning and control method (JPCM) based on factor graph optimization (FGO), which combines sensors' measurements and control intention. In particular, the positioning measurements are formulated as the factors in the factor graph model, such as the positioning from the GNSS. The model predictive control (MPC) is also formulated as the additional factors in the factor graph model. By solving the factor graph contributed by both the positioning factor and the MPC-based factors, the complementariness of positioning and control can be fully explored. To guarantee reliable system dynamic parameters, we validate the effectiveness of the proposed method using a simulated quadrotor system which showed significantly improved trajectory following performance. To benefit the research community, we open-source our code and make it available at https://github.com/RoboticsPolyu/IPN_MPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月星河完成签到 ,获得积分10
刚刚
always完成签到 ,获得积分10
刚刚
星辰大海应助半胱氨酸采纳,获得10
刚刚
墨旱莲完成签到,获得积分10
5秒前
scott_zip发布了新的文献求助10
5秒前
奥利给完成签到,获得积分10
5秒前
明明完成签到 ,获得积分10
6秒前
芹菜自愿内卷完成签到,获得积分10
6秒前
zokor完成签到 ,获得积分0
9秒前
努力退休小博士完成签到 ,获得积分10
10秒前
橙子完成签到,获得积分10
11秒前
陈补天完成签到 ,获得积分10
12秒前
CipherSage应助慧灰huihui采纳,获得10
13秒前
乐观健柏完成签到,获得积分10
14秒前
16秒前
CodeCraft应助大橙子采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
jeeya完成签到,获得积分10
18秒前
20秒前
科目三应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
伦语发布了新的文献求助10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
xuzj应助科研通管家采纳,获得10
20秒前
xuzj应助科研通管家采纳,获得10
20秒前
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
丘比特应助科研通管家采纳,获得10
21秒前
yull完成签到,获得积分10
21秒前
小巧书雪完成签到,获得积分10
24秒前
大大怪将军完成签到,获得积分10
25秒前
哈哈哈完成签到 ,获得积分0
25秒前
小怪完成签到,获得积分10
26秒前
爱吃泡芙完成签到,获得积分10
27秒前
白桃战士完成签到,获得积分10
28秒前
30秒前
qingchenwuhou完成签到 ,获得积分10
30秒前
XXX完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022