Mutually enhanced multi-view information learning for segmentation of lung tumor in CT images

分割 人工智能 计算机科学 肺肿瘤 计算机视觉 医学 放射科 内科学
作者
Ping Xuan,Yinfeng Xu,Hui Cui,Qiangguo Jin,Linlin Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (7): 075008-075008
标识
DOI:10.1088/1361-6560/ad294c
摘要

Abstract Objective. The accurate automatic segmentation of tumors from computed tomography (CT) volumes facilitates early diagnosis and treatment of patients. A significant challenge in tumor segmentation is the integration of the spatial correlations among multiple parts of a CT volume and the context relationship across multiple channels. Approach. We proposed a mutually enhanced multi-view information model (MEMI) to propagate and fuse the spatial correlations and the context relationship and then apply it to lung tumor CT segmentation. First, a feature map was obtained from segmentation backbone encoder, which contained many image region nodes. An attention mechanism from the region node perspective was presented to determine the impact of all the other nodes on a specific node and enhance the node attribute embedding. A gated convolution-based strategy was also designed to integrate the enhanced attributes and the original node features. Second, transformer across multiple channels was constructed to integrate the channel context relationship. Finally, since the encoded node attributes from the gated convolution view and those from the channel transformer view were complementary, an interaction attention mechanism was proposed to propagate the mutual information among the multiple views. Main results. The segmentation performance was evaluated on both public lung tumor dataset and private dataset collected from a hospital. The experimental results demonstrated that MEMI was superior to other compared segmentation methods. Ablation studies showed the contributions of node correlation learning, channel context relationship learning, and mutual information interaction across multiple views to the improved segmentation performance. Utilizing MEMI on multiple segmentation backbones also demonstrated MEMI's generalization ability. Significance. Our model improved the lung tumor segmentation performance by learning the correlations among multiple region nodes, integrating the channel context relationship, and mutual information enhancement from multiple views.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Distance发布了新的文献求助10
1秒前
上官若男应助Anesthesialy采纳,获得10
1秒前
2秒前
忧伤的冰薇完成签到 ,获得积分10
3秒前
4秒前
yujfki完成签到,获得积分20
5秒前
RenL完成签到,获得积分10
5秒前
鑫鑫完成签到,获得积分10
6秒前
奔波儿灞发布了新的文献求助10
7秒前
yoo发布了新的文献求助10
7秒前
诚心的源智完成签到 ,获得积分10
7秒前
二区发布了新的文献求助10
8秒前
NSGB完成签到 ,获得积分10
10秒前
11秒前
new完成签到 ,获得积分10
11秒前
haocong完成签到 ,获得积分10
12秒前
16秒前
17秒前
19秒前
活泼的梨愁完成签到,获得积分10
19秒前
qsw关闭了qsw文献求助
19秒前
朱俊燕完成签到,获得积分10
20秒前
研友_LMyj0L发布了新的文献求助10
21秒前
26秒前
屁颠屁颠_狼完成签到 ,获得积分10
26秒前
彩色的芝麻完成签到 ,获得积分10
27秒前
29秒前
29秒前
30秒前
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
33秒前
yx_cheng应助科研通管家采纳,获得20
33秒前
东木应助科研通管家采纳,获得20
33秒前
yx_cheng应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得30
33秒前
梧桐给cvvvvv的求助进行了留言
33秒前
传奇3应助科研通管家采纳,获得30
33秒前
Bryan应助科研通管家采纳,获得10
33秒前
生动路人应助科研通管家采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499