Mutually enhanced multi-view information learning for segmentation of lung tumor in CT images

分割 人工智能 计算机科学 肺肿瘤 计算机视觉 医学 放射科 内科学
作者
Ping Xuan,Yinfeng Xu,Hui Cui,Qiangguo Jin,Linlin Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (7): 075008-075008
标识
DOI:10.1088/1361-6560/ad294c
摘要

Abstract Objective. The accurate automatic segmentation of tumors from computed tomography (CT) volumes facilitates early diagnosis and treatment of patients. A significant challenge in tumor segmentation is the integration of the spatial correlations among multiple parts of a CT volume and the context relationship across multiple channels. Approach. We proposed a mutually enhanced multi-view information model (MEMI) to propagate and fuse the spatial correlations and the context relationship and then apply it to lung tumor CT segmentation. First, a feature map was obtained from segmentation backbone encoder, which contained many image region nodes. An attention mechanism from the region node perspective was presented to determine the impact of all the other nodes on a specific node and enhance the node attribute embedding. A gated convolution-based strategy was also designed to integrate the enhanced attributes and the original node features. Second, transformer across multiple channels was constructed to integrate the channel context relationship. Finally, since the encoded node attributes from the gated convolution view and those from the channel transformer view were complementary, an interaction attention mechanism was proposed to propagate the mutual information among the multiple views. Main results. The segmentation performance was evaluated on both public lung tumor dataset and private dataset collected from a hospital. The experimental results demonstrated that MEMI was superior to other compared segmentation methods. Ablation studies showed the contributions of node correlation learning, channel context relationship learning, and mutual information interaction across multiple views to the improved segmentation performance. Utilizing MEMI on multiple segmentation backbones also demonstrated MEMI's generalization ability. Significance. Our model improved the lung tumor segmentation performance by learning the correlations among multiple region nodes, integrating the channel context relationship, and mutual information enhancement from multiple views.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Davion2018完成签到,获得积分10
3秒前
子车茗应助Banbor2021采纳,获得20
3秒前
3秒前
淡然鸡翅完成签到,获得积分10
3秒前
coco发布了新的文献求助60
5秒前
小包子完成签到,获得积分10
6秒前
6秒前
7秒前
细心的斩发布了新的文献求助10
7秒前
feitian201861完成签到,获得积分10
8秒前
没所谓完成签到,获得积分20
9秒前
Manzia完成签到,获得积分10
11秒前
gwff发布了新的文献求助10
11秒前
细心的斩完成签到,获得积分10
14秒前
独孤一草完成签到,获得积分10
15秒前
16秒前
19秒前
19秒前
19秒前
20秒前
20秒前
惜曦完成签到 ,获得积分10
20秒前
21秒前
XHY发布了新的文献求助10
21秒前
22秒前
笔墨留香发布了新的文献求助10
24秒前
24秒前
自觉采枫发布了新的文献求助10
24秒前
26秒前
shiningxujin发布了新的文献求助10
27秒前
28秒前
星辰发布了新的文献求助10
29秒前
星辰大海应助自觉采枫采纳,获得10
29秒前
guojingjing发布了新的文献求助10
29秒前
背后的桐发布了新的文献求助10
29秒前
铖訾发布了新的文献求助10
30秒前
XHY完成签到,获得积分10
31秒前
在水一方应助忘多采纳,获得10
32秒前
34秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343564
求助须知:如何正确求助?哪些是违规求助? 2970579
关于积分的说明 8644598
捐赠科研通 2650650
什么是DOI,文献DOI怎么找? 1451432
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661549