Phosphorus doped magnetic biochar activated PMS for effective degradation of pesticide in water: Targeted regulation of interfacial charge transfer by phosphorus doping

生物炭 降级(电信) 吸附 催化作用 电子转移 化学 化学工程 无机化学 光化学 热解 有机化学 计算机科学 电信 工程类
作者
Xuetao Liang,Yujie Zhao,Bingyang Liu,Jingran Li,Longyan Cui,Chunyu Wang,Qi Yang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:340: 126739-126739 被引量:10
标识
DOI:10.1016/j.seppur.2024.126739
摘要

In this study, the incorporation of phosphorus (P) atoms into magnetic biochar was strategically achieved, and the preparation conditions of the composites were optimized by adjusting the pyrolysis temperature and iron doping. The resulting P-doped magnetic biochar (Fe2P@BC-700) exhibited remarkable catalytic activity towards peroxymonosulfate (PMS), rendering it highly effective for the degradation of common organic pesticides, such as 2-Methyl-4-chlorophenoxyacetic acid (MCPA), in aqueous environments. Among them, the apparent rate constant in the oxidation stage was 6.42 times as large as that of magnetic biochar (Fe2BC-700). This was attributed to the fact that the introduced P species tuned the surface electronic configuration of the pristine carbon layer with excellent electron storage and transport capabilities, and the Fe-O-P bonds in the composites acted as electron transport bridges to promote iron cycling in the magnetic nanoparticles during catalysis. The elimination of MCPA in the constructed adsorption enrichment-oxidative degradation system (Fe2P@BC-700/PMS) was achieved through a non-radical pathway dominated by singlet oxygen (1O2) and electron transfer process (ETP). It also ensured broad pH adaptability, environmental stability and repeatability. Density-functional theory calculated that ROS tended to attack the C-Cl branched chain in MCPA and the degradation products showed a tendency of toxicity reduction. This study provided new ideas for the design of market-oriented functional biochar catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一自文又欠完成签到,获得积分10
刚刚
刚刚
1秒前
范同学完成签到,获得积分10
1秒前
七七发布了新的文献求助10
1秒前
1秒前
Evaporate发布了新的文献求助10
1秒前
橘子发布了新的文献求助10
2秒前
wen1发布了新的文献求助10
2秒前
666666完成签到,获得积分10
2秒前
英姑应助之昂采纳,获得10
2秒前
科研通AI5应助迅速沛蓝采纳,获得10
3秒前
徐徐徐徐发布了新的文献求助10
3秒前
刘陶完成签到,获得积分10
3秒前
小景毕业完成签到,获得积分20
4秒前
端庄书雁发布了新的文献求助10
4秒前
许若南发布了新的文献求助10
5秒前
Nuyoah发布了新的文献求助10
5秒前
慕青应助dandan采纳,获得10
5秒前
YYH完成签到,获得积分10
5秒前
实验农民工完成签到,获得积分10
6秒前
meikoo发布了新的文献求助10
6秒前
SciGPT应助点到为止采纳,获得10
6秒前
浅学者发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
HEIKU应助yj91采纳,获得10
8秒前
8秒前
8秒前
NexusExplorer应助Chris采纳,获得10
8秒前
wen1完成签到,获得积分10
9秒前
酷波er应助tzy采纳,获得10
9秒前
液晶屏99发布了新的文献求助10
10秒前
阿屁屁猪发布了新的文献求助10
10秒前
科研通AI5应助小熊猫采纳,获得10
11秒前
12秒前
Liqy发布了新的文献求助10
12秒前
专注的曼凡完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488034
求助须知:如何正确求助?哪些是违规求助? 3075861
关于积分的说明 9142479
捐赠科研通 2768110
什么是DOI,文献DOI怎么找? 1518966
邀请新用户注册赠送积分活动 703449
科研通“疑难数据库(出版商)”最低求助积分说明 701864