Recovery of lithium resources from salt lake brines using a novel low dissolution loss extractant of DEHEHP with FeCl3

溶解 盐湖 盐(化学) 锂(药物) 化学 无机化学 地质学 有机化学 医学 构造盆地 内分泌学 古生物学
作者
LI He-min,Yuefeng Deng,Ji Chen
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:341: 126779-126779 被引量:8
标识
DOI:10.1016/j.seppur.2024.126779
摘要

Lithium is becoming one of the most eye-catching metal elements in modern industry, mainly because of its crucial role in manufacturing lithium-ion batteries. The demand for lithium in the new energy market is burgeoning significantly, while enormous lithium resources reserved in salt lakes in northwest China are not exploited effectively, due to the high Mg/Li mass ratio. Although the TBP extraction system has been applied in lithium extraction from salt lake brines, there are still some problems to be solved, such as its high solubility, easy degradation, and so on. In this work, a novel low dissolution loss extraction system was developed, with DEHEHP and FeCl3 serving as extractant and co-extractant, respectively. A real brine from Da Qaidam Lake was used to prove its practicality and effectiveness. After studying the detailed conditions of each process, a whole countercurrent process was performed, including eight stages of extraction, two stages of scrubbing, three stages of stripping, and regeneration. It was found that 99.4 % of Li+ was successfully recovered from the brine, and the stripping liquor contained 22.74 g/L Li+, 0.51 g/L Mg2+, and 3.16 g/L B. The concentration of Li+ increased approximately 20-fold while the Mg/Li mass ratio decreased by a factor of 3900, from real brine to stripping liquor. High-purity (>98.5 %) lithium carbonate products were prepared from the stripping liquor by precipitation. The dissolution loss of the organic phase in the raffinate was only 22.5 ppm, much lower than published works. Finally, the mechanism of extraction and co-extraction were systematically studied and the structure of the complex formed during extraction was revealed as LiFeCl4·2DEHEHP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shotgod发布了新的文献求助10
刚刚
ling玲完成签到,获得积分10
刚刚
奔奔发布了新的文献求助10
刚刚
SweepingMonk应助虚心盼晴采纳,获得10
1秒前
2秒前
汉堡包应助XXF采纳,获得10
2秒前
wzh完成签到,获得积分10
2秒前
海底落日完成签到,获得积分20
2秒前
3秒前
科研通AI5应助123采纳,获得30
3秒前
烟花应助pi采纳,获得10
4秒前
汉堡包应助小木木壮采纳,获得10
4秒前
4秒前
yl发布了新的文献求助30
4秒前
菲菲呀发布了新的文献求助10
4秒前
4秒前
科研通AI5应助禾泽采纳,获得30
5秒前
坚强的樱发布了新的文献求助10
5秒前
英俊梦槐完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
6秒前
6秒前
白泽发布了新的文献求助10
7秒前
一条贤与发布了新的文献求助20
7秒前
7秒前
英俊谷秋完成签到,获得积分10
7秒前
7秒前
通~发布了新的文献求助10
8秒前
所所应助火星探险采纳,获得10
8秒前
8秒前
Guoyeye完成签到,获得积分10
8秒前
9秒前
阿芙乐尔完成签到 ,获得积分10
9秒前
_呱_发布了新的文献求助30
10秒前
10秒前
10秒前
Akim应助眼睛大的金鱼采纳,获得10
11秒前
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794