The development of prognostic gene markers associated with disulfidptosis in gastric cancer and their application in predicting drug response

列线图 单变量 接收机工作特性 比例危险模型 肿瘤科 背景(考古学) 内科学 Lasso(编程语言) 小桶 癌症 医学 多元统计 生物信息学 生物 基因 基因表达 转录组 机器学习 遗传学 计算机科学 古生物学 万维网
作者
Xing Liu,Jianghong Ou
出处
期刊:Heliyon [Elsevier]
卷期号:: e26013-e26013 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e26013
摘要

BackgroundGastric cancer (GC) is a malignancy known for its high fatality rate. Disulfidptosis, a potentially innovative therapeutic strategy for cancer treatment, has been proposed. Nevertheless, the specific involvement of disulfidptosis in the context of GC remains uncertain.MethodsThe mRNA expression profiles were obtained from the TCGA and GEO databases. Univariate and LASSO Cox regression analyses were employed to identify differentially expressed genes and develop a risk model for disulfidptosis-related genes. The performance of the model was evaluated using Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate Cox regression analyses were conducted to determine if the risk model could serve as an independent prognostic factor. The biological function of the identified genes was assessed through GO, KEGG, and GSEA analyses. The prediction of drug response was conducted employing the package “pRRophetic”. Furthermore, gene expression was determined using qRT-PCR.ResultsAn eight-gene signature were identified and utilized to categorize patients into low- and high-risk groups. Survival, receiver operating characteristic (ROC) curve, and Cox analyses provided clarification that these eight hub genes served as a favorable independent prognostic factor for patients with GC. A nomogram was constructed by integrating clinical parameters with the risk signatures, demonstrating high precision in predicting 1-, 3-, and 5-year survival rates. Additionally, drug sensitivity was different in the high-risk and low-risk groups, and the expression of three genes was verified by qRT-PCR.ConclusionThe prognostic risk model developed in this study demonstrates the potential to accurately forecast the prognosis of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Mars采纳,获得10
刚刚
迪士尼在逃后母完成签到,获得积分10
刚刚
刚刚
我是老大应助su采纳,获得10
1秒前
hhh发布了新的文献求助10
2秒前
3秒前
科研通AI5应助魏伯安采纳,获得10
4秒前
4秒前
神可馨完成签到 ,获得积分10
5秒前
Hangerli发布了新的文献求助20
5秒前
HealthyCH完成签到,获得积分10
5秒前
li完成签到,获得积分10
6秒前
7秒前
ononon发布了新的文献求助10
9秒前
9秒前
liu完成签到,获得积分10
11秒前
LWJ发布了新的文献求助10
12秒前
13秒前
大反应釜完成签到,获得积分10
13秒前
TT发布了新的文献求助10
16秒前
Jenny发布了新的文献求助10
18秒前
18秒前
完美凝竹发布了新的文献求助10
18秒前
我是站长才怪应助细腻沅采纳,获得10
19秒前
JG完成签到 ,获得积分10
19秒前
hhh完成签到,获得积分20
19秒前
科研通AI5应助想瘦的海豹采纳,获得10
20秒前
随性完成签到 ,获得积分10
20秒前
自由的信仰完成签到,获得积分10
21秒前
23秒前
24秒前
24秒前
夏夏发布了新的文献求助10
25秒前
打打应助Hangerli采纳,获得10
27秒前
完美凝竹完成签到,获得积分10
28秒前
zfzf0422发布了新的文献求助10
29秒前
蜘蛛道理完成签到 ,获得积分10
29秒前
冷傲迎梦发布了新的文献求助10
30秒前
852应助MEME采纳,获得10
30秒前
Godzilla发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824