The development of prognostic gene markers associated with disulfidptosis in gastric cancer and their application in predicting drug response

列线图 单变量 接收机工作特性 比例危险模型 肿瘤科 背景(考古学) 内科学 Lasso(编程语言) 小桶 癌症 医学 多元统计 生物信息学 生物 基因 基因表达 转录组 机器学习 遗传学 计算机科学 古生物学 万维网
作者
Xing Liu,Jianghong Ou
出处
期刊:Heliyon [Elsevier]
卷期号:: e26013-e26013 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e26013
摘要

BackgroundGastric cancer (GC) is a malignancy known for its high fatality rate. Disulfidptosis, a potentially innovative therapeutic strategy for cancer treatment, has been proposed. Nevertheless, the specific involvement of disulfidptosis in the context of GC remains uncertain.MethodsThe mRNA expression profiles were obtained from the TCGA and GEO databases. Univariate and LASSO Cox regression analyses were employed to identify differentially expressed genes and develop a risk model for disulfidptosis-related genes. The performance of the model was evaluated using Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate Cox regression analyses were conducted to determine if the risk model could serve as an independent prognostic factor. The biological function of the identified genes was assessed through GO, KEGG, and GSEA analyses. The prediction of drug response was conducted employing the package “pRRophetic”. Furthermore, gene expression was determined using qRT-PCR.ResultsAn eight-gene signature were identified and utilized to categorize patients into low- and high-risk groups. Survival, receiver operating characteristic (ROC) curve, and Cox analyses provided clarification that these eight hub genes served as a favorable independent prognostic factor for patients with GC. A nomogram was constructed by integrating clinical parameters with the risk signatures, demonstrating high precision in predicting 1-, 3-, and 5-year survival rates. Additionally, drug sensitivity was different in the high-risk and low-risk groups, and the expression of three genes was verified by qRT-PCR.ConclusionThe prognostic risk model developed in this study demonstrates the potential to accurately forecast the prognosis of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leezhen完成签到,获得积分10
2秒前
AteeqBaloch完成签到,获得积分10
2秒前
王果果完成签到,获得积分20
2秒前
君莫笑完成签到,获得积分10
3秒前
科研通AI2S应助Creator12345666采纳,获得10
4秒前
zain完成签到 ,获得积分10
6秒前
呆萌安青完成签到 ,获得积分10
6秒前
7秒前
龘龘龘完成签到 ,获得积分10
7秒前
踏雪飞鸿完成签到,获得积分10
9秒前
Noldor完成签到,获得积分10
9秒前
王果果发布了新的文献求助10
10秒前
caicai发布了新的文献求助30
10秒前
12秒前
刘田完成签到,获得积分10
12秒前
糯米种子完成签到,获得积分10
13秒前
纪元龙完成签到,获得积分10
14秒前
tkx是流氓兔完成签到,获得积分10
14秒前
今天要学习完成签到 ,获得积分10
15秒前
拼搏的代玉完成签到,获得积分10
15秒前
殷勤的紫槐完成签到,获得积分10
15秒前
不如吃茶去完成签到,获得积分10
16秒前
Huimin发布了新的文献求助10
17秒前
BioZheng完成签到,获得积分10
17秒前
TJTerrence发布了新的文献求助10
18秒前
小马甲应助木木采纳,获得10
19秒前
微微发布了新的文献求助10
19秒前
左丘不评完成签到 ,获得积分0
19秒前
sunshine999完成签到,获得积分10
19秒前
年轻的白梦完成签到,获得积分10
21秒前
红叶完成签到,获得积分10
22秒前
淡然水绿完成签到,获得积分10
23秒前
御风完成签到,获得积分10
23秒前
xiaoruixue完成签到,获得积分10
23秒前
震动的平蝶完成签到 ,获得积分10
24秒前
Andrew02完成签到,获得积分10
24秒前
长也关注了科研通微信公众号
26秒前
26秒前
甜甜圈完成签到,获得积分10
28秒前
芋头读文献完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565