The 3-hydroxyacyl-CoA dehydratase 1/2 form complex with trans-2-enoyl-CoA reductase involved in substrates transfer in very long chain fatty acid elongation

脱水酶 延伸率 生物化学 还原酶 化学 立体化学 生物 极限抗拉强度 冶金 材料科学
作者
Yiding Zhou,Rui Li,Richard D. Ye,Ruobing Ren,Leiye Yu
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:: 149588-149588
标识
DOI:10.1016/j.bbrc.2024.149588
摘要

Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle. However, the VLCFAs elongation machinery is located in ER membrane and consists of four components, FA elongase (ELOVL), 3-ketoacyl-CoA reductase (KAR), 3-hydroxyacyl-CoA dehydratase (HACD) and trans-2-enoyl-CoA reductase (TECR), in different with the long-chain fatty acid machinery fatty acid synthase (FAS) complex. Although the critical components in the elongation cycle are identified, the detailed catalytic and regulation mechanisms are still poorly understood. Here, we focused on the structural and biochemical analysis of TECR-associated VLCFA elongation reactions. Firstly, we identified a stable complex of human HACD2-TECR based on extensive in vitro characterizations. Combining computational modeling and biochemical analysis, we confirmed the critical interactions between TECR and HACD1/2. Then, we proposed the putative substrate binding sites and catalytic residues for TECR and HACD. Besides, we revealed the structural similarities of HACD with ELOVLs and proposed the possible competition mechanism of TECR-associated complex formation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的小萱完成签到,获得积分10
1秒前
奥利奥爱好者完成签到,获得积分10
2秒前
2秒前
满意的匪完成签到 ,获得积分10
3秒前
小郑完成签到 ,获得积分10
4秒前
只只完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
司空晓山发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
周才发布了新的文献求助10
7秒前
7秒前
海蓝博完成签到,获得积分10
7秒前
阿峤完成签到,获得积分10
7秒前
苦瓜不哭发布了新的文献求助10
8秒前
Rollei应助科研通管家采纳,获得10
8秒前
Rollei应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Rollei应助科研通管家采纳,获得10
8秒前
飘逸书易完成签到,获得积分20
11秒前
安详的御姐完成签到,获得积分10
11秒前
12秒前
111完成签到 ,获得积分10
12秒前
993494543完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助30
12秒前
叶曦完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841