Global and local multi-modal feature mutual learning for retinal vessel segmentation

分割 人工智能 特征(语言学) 情态动词 相互信息 计算机科学 模式识别(心理学) 软件可移植性 过程(计算) 光学相干层析成像 计算机视觉 可扩展性 机器学习 眼科 医学 数据库 程序设计语言 操作系统 化学 高分子化学 语言学 哲学
作者
Xin Zhao,Jing Zhang,Qiaozhe Li,Tengfei Zhao,Yi Li,Zifeng Wu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110376-110376 被引量:4
标识
DOI:10.1016/j.patcog.2024.110376
摘要

Research on optical coherence tomography angiography (OCTA) images has received extensive attention in recent years since it provides more detailed information about retinal structures. The automatic segmentation of retinal vessel (RV) has become one of the key issues in the quantification of retinal indicators. To this end, there are various methods proposed with cutting-edge designs and techniques in the literature. However, most of them only learn features from single-modal data, despite the potential relation between data from different modalities. Clinically, 2D projection maps are more convenient for doctors to observe. Nevertheless, 3D volumes preserve the intrinsic retinal structure. We thus propose a novel multi-modal feature mutual learning framework that contains local mutual learning and global mutual learning capturing 2D and 3D information. In the framework, the 3D model and 2D model learn collaboratively and teach each other throughout the training process. Experimental results show that our method outperforms previous deep-learning methods in RV segmentation. The generalization experiments on the ROSE dataset demonstrate the portability and scalability of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
believer完成签到,获得积分10
刚刚
helppppp完成签到,获得积分10
刚刚
Orange应助带虾的烧麦采纳,获得50
1秒前
顾矜应助zzz采纳,获得10
2秒前
Akim应助xin采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
Sunny完成签到 ,获得积分10
4秒前
科研通AI2S应助acuter采纳,获得10
6秒前
Ricey应助蔡从安采纳,获得10
6秒前
7秒前
万能图书馆应助潇洒采纳,获得10
7秒前
李木头完成签到,获得积分10
8秒前
所所应助无情白羊采纳,获得10
8秒前
zhuzhu发布了新的文献求助10
9秒前
Jasper应助shinn采纳,获得10
11秒前
HQS完成签到,获得积分10
12秒前
是真的发布了新的文献求助10
13秒前
共享精神应助帅哥采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
miio完成签到,获得积分10
15秒前
传奇3应助铭铭铭采纳,获得10
15秒前
16秒前
思源应助宁ning采纳,获得10
16秒前
17秒前
17秒前
17秒前
韩hh完成签到,获得积分10
18秒前
18秒前
朴实的幻灵应助DC采纳,获得10
18秒前
18秒前
布洛芬完成签到,获得积分20
19秒前
19秒前
20秒前
fh发布了新的文献求助10
20秒前
蓝橙完成签到,获得积分10
21秒前
雪雪儿发布了新的文献求助30
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303