Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images

计算机科学 眼底(子宫) 黄斑病 人工智能 眼科 验光服务 视网膜病变 医学 糖尿病 内分泌学
作者
Li Lu,Xuhao Pan,Panji Jin,Ye Ding
出处
期刊:Lecture Notes in Computer Science 卷期号:: 18-30
标识
DOI:10.1007/978-3-031-54857-4_2
摘要

Myopic maculopathy is a highly myopic retinal disorder that often occurs in highly myopic patients, serving as a major cause of visual impairment and blindness in numerous countries. Currently, fundus images serve as a prevalent diagnostic tool for myopic maculopathy. However, its efficacy relies on the expertise of clinicians, making the process labor-intensive. Thus, we propose a model specifically designed for the image classification of myopic maculopathy, named Swin-MMC, based on the Swin Transformer model architecture, which achieves outstanding performance on the test dataset. To achieve a finer-grained classification of myopic maculopathy in fundus images, we have innovatively and for the first time proposed the use of enhanced ArcFace loss in medical image classification. Then, based on the Swin-MMC model, we introduce a weak label strategy that effectively mitigates overfitting. Our approach achieves significantly improved results on the test dataset and can be easily used for various datasets and classification tasks. We conduct a series of experiments in the MMAC2023 challenge. In the testing phase, our average performance metric reaches 86.60%. In the further testing phase, our model's performance improves to 88.23%, ultimately securing the championship in the MMAC2023 challenge. The codes allowing replication of this study have been made publicly available at https://github.com/LuliDreamAI/MICCAI_TASK1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
刚刚
Umwandlung完成签到,获得积分10
2秒前
gorgeousgaga完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助ipeakkka采纳,获得10
4秒前
852应助章家炜采纳,获得10
5秒前
Gauss应助张小汉采纳,获得30
7秒前
嘻嘻发布了新的文献求助10
7秒前
杰哥完成签到 ,获得积分10
8秒前
Ava应助赵小可可可可采纳,获得10
8秒前
科研通AI5应助kento采纳,获得30
9秒前
nkmenghan发布了新的文献求助10
10秒前
13秒前
redondo10完成签到,获得积分0
14秒前
15秒前
乔qiao发布了新的文献求助30
18秒前
WZ0904发布了新的文献求助10
19秒前
poegtam完成签到,获得积分10
20秒前
大胆盼兰发布了新的文献求助10
21秒前
wuyan204完成签到 ,获得积分10
22秒前
windcreator完成签到,获得积分10
22秒前
redondo5完成签到,获得积分0
22秒前
wangrswjx完成签到 ,获得积分10
22秒前
科研通AI5应助su采纳,获得10
22秒前
25秒前
27秒前
小二郎应助嘻嘻采纳,获得10
27秒前
yun完成签到 ,获得积分10
28秒前
28秒前
30秒前
健忘曼冬发布了新的文献求助10
30秒前
redondo完成签到,获得积分10
30秒前
momo完成签到,获得积分10
31秒前
希望天下0贩的0应助meng采纳,获得10
32秒前
龙歪歪发布了新的文献求助10
33秒前
33秒前
暮城完成签到,获得积分10
33秒前
34秒前
云墨完成签到 ,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849