Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images

计算机科学 眼底(子宫) 黄斑病 人工智能 眼科 验光服务 视网膜病变 医学 糖尿病 内分泌学
作者
Li Lu,Xuhao Pan,Panji Jin,Ye Ding
出处
期刊:Lecture Notes in Computer Science 卷期号:: 18-30
标识
DOI:10.1007/978-3-031-54857-4_2
摘要

Myopic maculopathy is a highly myopic retinal disorder that often occurs in highly myopic patients, serving as a major cause of visual impairment and blindness in numerous countries. Currently, fundus images serve as a prevalent diagnostic tool for myopic maculopathy. However, its efficacy relies on the expertise of clinicians, making the process labor-intensive. Thus, we propose a model specifically designed for the image classification of myopic maculopathy, named Swin-MMC, based on the Swin Transformer model architecture, which achieves outstanding performance on the test dataset. To achieve a finer-grained classification of myopic maculopathy in fundus images, we have innovatively and for the first time proposed the use of enhanced ArcFace loss in medical image classification. Then, based on the Swin-MMC model, we introduce a weak label strategy that effectively mitigates overfitting. Our approach achieves significantly improved results on the test dataset and can be easily used for various datasets and classification tasks. We conduct a series of experiments in the MMAC2023 challenge. In the testing phase, our average performance metric reaches 86.60%. In the further testing phase, our model's performance improves to 88.23%, ultimately securing the championship in the MMAC2023 challenge. The codes allowing replication of this study have been made publicly available at https://github.com/LuliDreamAI/MICCAI_TASK1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
云中雨完成签到 ,获得积分10
1秒前
完美丹南完成签到,获得积分10
1秒前
小岚乖乖发布了新的文献求助10
1秒前
科研通AI2S应助敲一下叮采纳,获得10
1秒前
万能图书馆应助sidegate采纳,获得10
1秒前
hh完成签到 ,获得积分10
1秒前
rr完成签到,获得积分10
2秒前
SHAN发布了新的文献求助10
3秒前
随机完成签到,获得积分10
3秒前
木槿完成签到,获得积分10
3秒前
oldblack完成签到,获得积分10
4秒前
毛77完成签到,获得积分10
4秒前
excellent_shit完成签到,获得积分10
5秒前
6秒前
轩贝发布了新的文献求助20
7秒前
小马完成签到 ,获得积分10
7秒前
皮一下完成签到,获得积分10
8秒前
李健的小迷弟应助dcy采纳,获得10
10秒前
Jenny应助猛犸象采纳,获得30
11秒前
ccccc完成签到,获得积分10
12秒前
干净的时光应助旺旺采纳,获得10
12秒前
13秒前
13秒前
xiaohu完成签到,获得积分10
14秒前
李健应助L一年采纳,获得10
14秒前
14秒前
15秒前
16秒前
蒙先生完成签到,获得积分20
17秒前
黑妖发布了新的文献求助10
18秒前
18秒前
18秒前
科研通AI2S应助寻雪采纳,获得10
18秒前
19秒前
kai发布了新的文献求助30
20秒前
21秒前
21秒前
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912