Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers

鞋跟 脚踝 随机森林 运动学 医学 机器学习 逻辑回归 人工智能 物理医学与康复 计算机科学 物理疗法 外科 物理 经典力学 解剖
作者
Ui‐jae Hwang,Oh-Yun Kwon,Jun‐hee Kim,Gyeong-tae Gwak
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241235116
摘要

Objective Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise. Methods In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM HR ], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained. Results The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model. Conclusion Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝气发布了新的文献求助10
刚刚
淡然紫寒完成签到,获得积分20
刚刚
未知发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助欣喜若灵采纳,获得10
3秒前
3秒前
小二郎应助风清扬采纳,获得10
3秒前
4秒前
4秒前
4秒前
科研通AI5应助吴微采纳,获得10
5秒前
温暖宛筠完成签到,获得积分10
5秒前
政政勇闯世界完成签到,获得积分10
6秒前
知名不具发布了新的文献求助10
6秒前
7秒前
sky完成签到,获得积分10
7秒前
科研通AI5应助未知采纳,获得10
7秒前
冷静的奇迹完成签到,获得积分10
8秒前
8秒前
upp完成签到,获得积分20
8秒前
ascv完成签到,获得积分10
8秒前
多喝水发布了新的文献求助10
9秒前
赘婿应助chensihao采纳,获得10
9秒前
精明玲发布了新的文献求助10
10秒前
10秒前
10秒前
香蕉觅云应助乔垣结衣采纳,获得10
10秒前
ding应助亚铁氰化钾采纳,获得10
11秒前
12秒前
niccer完成签到,获得积分10
12秒前
英姑应助柏林的柏采纳,获得10
12秒前
12秒前
13秒前
13秒前
未知完成签到,获得积分20
13秒前
13秒前
14秒前
止戈完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096