Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers

鞋跟 脚踝 随机森林 运动学 医学 机器学习 逻辑回归 人工智能 物理医学与康复 计算机科学 物理疗法 外科 物理 经典力学 解剖
作者
Ui‐jae Hwang,Oh-Yun Kwon,Jun‐hee Kim,Gyeong-tae Gwak
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241235116
摘要

Objective Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise. Methods In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM HR ], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained. Results The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model. Conclusion Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
zhanhunliu发布了新的文献求助10
3秒前
4秒前
5秒前
薰硝壤应助爱学习的YY采纳,获得20
6秒前
lsq完成签到,获得积分10
6秒前
慕青应助Maestro_S采纳,获得10
7秒前
8秒前
King发布了新的文献求助10
8秒前
9秒前
艾斯完成签到,获得积分10
10秒前
TTT完成签到,获得积分10
10秒前
xun完成签到,获得积分10
10秒前
超帅剑心完成签到,获得积分20
11秒前
hxl发布了新的文献求助10
11秒前
大模型应助聆风采纳,获得10
12秒前
艾斯发布了新的文献求助10
12秒前
LQ完成签到,获得积分10
12秒前
skbz完成签到,获得积分10
13秒前
Sandro完成签到,获得积分20
13秒前
科研通AI2S应助黑土采纳,获得10
13秒前
lsq发布了新的文献求助10
14秒前
周涛发布了新的文献求助10
15秒前
zhanhunliu完成签到,获得积分10
15秒前
76关闭了76文献求助
16秒前
17秒前
平淡忻应助1226采纳,获得10
17秒前
你好明天完成签到,获得积分20
18秒前
18秒前
陶醉苠发布了新的文献求助10
18秒前
19秒前
zxvcbnm发布了新的文献求助10
20秒前
20秒前
抓紧跑路发布了新的文献求助10
22秒前
无花果应助束负允三金采纳,获得10
22秒前
22秒前
炙热萝发布了新的文献求助10
23秒前
23秒前
可爱的函函应助xh1719采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870