Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers

鞋跟 脚踝 随机森林 运动学 医学 机器学习 逻辑回归 人工智能 物理医学与康复 计算机科学 物理疗法 外科 物理 经典力学 解剖
作者
Ui‐jae Hwang,Oh-Yun Kwon,Jun‐hee Kim,Gyeong-tae Gwak
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241235116
摘要

Objective Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise. Methods In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM HR ], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained. Results The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model. Conclusion Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封印完成签到,获得积分10
刚刚
小王完成签到 ,获得积分20
2秒前
3秒前
王肖宁发布了新的文献求助10
3秒前
ding应助1816013153采纳,获得30
3秒前
FashionBoy应助小胡爱学习采纳,获得10
4秒前
今后应助拾柒采纳,获得10
4秒前
sun完成签到,获得积分10
5秒前
Ava应助陈篱采纳,获得10
5秒前
生动的豆芽完成签到 ,获得积分10
5秒前
123321完成签到,获得积分10
6秒前
庞mou完成签到,获得积分10
6秒前
LingC完成签到,获得积分10
7秒前
小可发布了新的文献求助10
9秒前
coolkid完成签到 ,获得积分0
11秒前
12秒前
13秒前
13秒前
16秒前
17秒前
18秒前
19秒前
巩志成完成签到,获得积分10
20秒前
wxyshare举报害羞映容求助涉嫌违规
20秒前
20秒前
Pan完成签到,获得积分10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
嘿嘿发布了新的文献求助10
24秒前
cccui发布了新的文献求助10
24秒前
escape完成签到,获得积分10
27秒前
无花果应助Guan采纳,获得10
27秒前
27秒前
小胡爱学习完成签到,获得积分10
27秒前
果冻呀发布了新的文献求助10
28秒前
Owen应助科研苦行僧采纳,获得10
28秒前
29秒前
jia发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093