Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers

鞋跟 脚踝 随机森林 运动学 医学 机器学习 逻辑回归 人工智能 物理医学与康复 计算机科学 物理疗法 外科 物理 经典力学 解剖
作者
Ui‐jae Hwang,Oh-Yun Kwon,Jun‐hee Kim,Gyeong-tae Gwak
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241235116
摘要

Objective Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise. Methods In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM HR ], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained. Results The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model. Conclusion Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴小阳完成签到,获得积分10
刚刚
NexusExplorer应助典雅的俊驰采纳,获得10
刚刚
机灵太君完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
稳重的安萱完成签到,获得积分10
1秒前
2秒前
无限小霜发布了新的文献求助20
2秒前
2秒前
Eraser完成签到,获得积分10
2秒前
微眠发布了新的文献求助10
3秒前
3秒前
汉堡包应助lever采纳,获得10
3秒前
4秒前
牛马完成签到 ,获得积分10
4秒前
4秒前
洛希发布了新的文献求助10
4秒前
李爱国应助abcdefg采纳,获得10
5秒前
5秒前
skyla1003完成签到,获得积分10
5秒前
学术机器1发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
搜集达人应助健忘芹采纳,获得10
6秒前
6秒前
111111发布了新的文献求助10
7秒前
杜志洪发布了新的文献求助10
7秒前
7秒前
td发布了新的文献求助10
7秒前
7秒前
hhh发布了新的文献求助10
8秒前
quzhenzxxx完成签到 ,获得积分10
8秒前
超级盼海完成签到,获得积分10
8秒前
紧张的紫文完成签到,获得积分10
8秒前
Owen应助现代书雪采纳,获得10
9秒前
英姑应助fffff11111采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225