Classification of chronic ankle instability using machine learning technique based on ankle kinematics during heel rise in delivery workers

鞋跟 脚踝 随机森林 运动学 医学 机器学习 逻辑回归 人工智能 物理医学与康复 计算机科学 物理疗法 外科 物理 经典力学 解剖
作者
Ui‐jae Hwang,Oh-Yun Kwon,Jun‐hee Kim,Gyeong-tae Gwak
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241235116
摘要

Objective Ankle injuries in delivery workers (DWs) are often caused by trips, and high recurrence rates of ankle sprains are related to chronic ankle instability (CAI). Heel rise requires joint angles and moments similar to those of the terminal stance phase of walking that the foot supinates. Thus, our study aimed to develop, determine, and compare the predictive performance of statistical machine learning models to classify DWs with and without CAI using ankle kinematics during heel rise. Methods In total, 203 DWs were screened for eligibility. Seven predictors were included in our study (age, work duration, body mass index, calcaneal stance position angle [CSPA] in the initial and terminal positions during heel rise, calcaneal movement during heel rise [CM HR ], and plantar flexion angle during heel rise). Six machine learning algorithms, including logistic regression, decision tree, AdaBoost, Extreme Gradient boosting machines, random forest, and support vector machine, were trained. Results The random forest model (area under the curve [AUC], 0.967 [excellent]; F1, 0.889; accuracy, 0.925) confirmed the best predictive performance in the test datasets among the six machine learning models. For Shapley Additive Explanations, old age, low CMHR, high CSPA in the initial position, high PFA, long work duration, low CSPA in the terminal position, and high body mass index were the most important predictors of CAI in the random forest model. Conclusion Ankle kinematics during heel rise can be considered in the classification of DWs with and without CAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆峻熙完成签到,获得积分20
1秒前
yyuu发布了新的文献求助10
2秒前
JJ发布了新的文献求助30
4秒前
4秒前
Kirin完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
hahaer完成签到,获得积分10
5秒前
5秒前
万能图书馆应助樊珩采纳,获得10
6秒前
lyon完成签到,获得积分10
7秒前
幽默鱼完成签到,获得积分10
7秒前
nini发布了新的文献求助10
7秒前
SciGPT应助hahaer采纳,获得10
9秒前
9秒前
10秒前
虚幻采枫发布了新的文献求助10
11秒前
11秒前
夏天的风完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
天天快乐应助lin采纳,获得10
13秒前
科研通AI2S应助ahxb采纳,获得10
13秒前
猫猫叽丫丫完成签到,获得积分10
14秒前
嗯嗯完成签到 ,获得积分10
14秒前
小蘑菇应助樊珩采纳,获得10
15秒前
15秒前
hymmloveGD发布了新的文献求助10
16秒前
李美兰发布了新的文献求助10
17秒前
不起发布了新的文献求助10
17秒前
Apei完成签到,获得积分10
17秒前
BrillSpikes完成签到,获得积分10
18秒前
18秒前
香翔想相完成签到,获得积分10
19秒前
王秋婷发布了新的文献求助10
20秒前
阿航完成签到,获得积分10
22秒前
领导范儿应助樊珩采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282