A novel starch-active lytic polysaccharide monooxygenase discovered with bioinformatics screening and its application in textile desizing

多糖 生物 淀粉 生物化学 单加氧酶 淀粉酶 食品科学 生物技术 细胞色素P450
作者
Meijuan Zhang,Xiaoping Fu,Rongrong Gu,Bohua Zhao,Xingya Zhao,Hui Song,Hong Zheng,Jianyong Xu,Wenqin Bai
出处
期刊:BMC Biotechnology [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12896-023-00826-1
摘要

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specifically catalyze starch substrates have relatively less members than AA9 and AA10 families to limit their application range. Amylase has been used in enzymatic desizing treatment of cotton fabric for semicentury which urgently need for new assistant enzymes to improve reaction efficiency and reduce cost so as to promote their application in the textile industry. Results A total of 380 unannotated new genes which probably encode AA13 family LPMOs were discovered by the Hidden Markov model scanning in this study. Ten of them have been successfully heterologous overexpressed. AlLPMO13 with the highest activity has been purified and determined its optimum pH and temperature as pH 5.0 and 50 °C. It also showed various oxidative activities on different substrates (modified corn starch > amylose > amylopectin > corn starch). The results of enzymatic textile desizing application showed that the best combination of amylase (5 g/L), AlLPMO13 (5 mg/L), and H 2 O 2 (3 g/L) made the desizing level and the capillary effects increased by 3 grades and more than 20%, respectively, compared with the results treated by only amylase. Conclusion The Hidden Markov model constructed basing on 34 AA13 family LPMOs was proved to be a valid bioinformatics tool for discovering novel starch-active LPMOs. The novel enzyme AlLPMO13 has strong development potential in the enzymatic textile industry both concerning on economy and on application effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起风了发布了新的文献求助10
刚刚
SciGPT应助平淡的半青采纳,获得10
刚刚
Lori发布了新的文献求助10
3秒前
3秒前
lcy完成签到,获得积分10
6秒前
6秒前
6秒前
Zx发布了新的文献求助10
6秒前
7秒前
小猿发布了新的文献求助10
8秒前
9秒前
新奇发布了新的文献求助10
9秒前
9秒前
10秒前
木光发布了新的文献求助10
10秒前
lcy发布了新的文献求助10
10秒前
zj杰完成签到,获得积分10
10秒前
汉堡包应助阿朱嘻嘻采纳,获得10
13秒前
zyt发布了新的文献求助10
15秒前
BBA发布了新的文献求助10
15秒前
15秒前
JamesPei应助新奇采纳,获得10
15秒前
木槿完成签到,获得积分10
16秒前
17秒前
yixiao发布了新的文献求助10
19秒前
小蘑菇应助Hawk采纳,获得10
20秒前
木槿发布了新的文献求助10
20秒前
星辰大海应助11采纳,获得10
23秒前
小太阳完成签到,获得积分10
23秒前
独钓寒江雪完成签到 ,获得积分10
23秒前
科研通AI2S应助ccq采纳,获得10
23秒前
24秒前
25秒前
zyt完成签到,获得积分20
25秒前
iNk应助yixiao采纳,获得10
25秒前
26秒前
独步出营完成签到 ,获得积分10
28秒前
28秒前
阿朱嘻嘻发布了新的文献求助10
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136456
求助须知:如何正确求助?哪些是违规求助? 2787471
关于积分的说明 7781435
捐赠科研通 2443406
什么是DOI,文献DOI怎么找? 1299154
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939